An estimation of the Young's modulus of bacterial cellulose filaments

被引:293
作者
Hsieh, Y. -C. [1 ]
Yano, H. [2 ]
Nogi, M. [2 ]
Eichhorn, S. J. [1 ]
机构
[1] Univ Manchester, Ctr Mat Sci, Sch Mat, Manchester M1 7HS, Lancs, England
[2] Kyoto Univ, Res Inst Sustainable Humanosphere, Kyoto 611011, Japan
关键词
bacterial cellulose; deformation; modulus; stiffness; Raman spectroscopy;
D O I
10.1007/s10570-008-9206-8
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
An estimation, using a Raman spectroscopic technique, of the Young's modulus of a single filament of bacterial cellulose is presented. This technique is used to determine the local molecular deformation of the bacterial cellulose via a shift in the central position of the 1095 cm(-1) Raman band, which corresponds to the stretching of the glycosidic bond in the backbone of the cellulose structure. By calculating the shift rate with respect to the applied strain it is shown that the stiffness of a single fibril of bacterial cellulose can be estimated. In order to perform this estimation, networks of fibres are rotated through 360 degrees and the intensity of the 1095 cm(-1) Raman band is recorded. It is shown that the intensity of this band is largely independent of the angle of rotation, which suggests that the networks are randomly distributed. The modulus is predicted from a calibration of Raman band shift against modulus, using previously published data, and by using Krenchel analysis to back-calculate the modulus of a single fibril. The value obtained (114 GPa) is higher than previously reported values for this parameter, but lower than estimates of the crystal modulus of cellulose-I (130-145 GPa). Reasons for these discrepancies are given in terms of the crystallinity and structural composition of the samples.
引用
收藏
页码:507 / 513
页数:7
相关论文
共 32 条
[1]   Tensile deformation of bacterial cellulose composites [J].
Astley, OM ;
Chanliaud, E ;
Donald, AM ;
Gidley, MJ .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2003, 32 (1-2) :28-35
[2]  
ATALLA RH, 1984, SCIENCE, V223, P283, DOI 10.1126/science.223.4633.283
[3]   STRAIN DEPENDENCE OF THE VIBRATIONAL-MODES OF A DIACETYLENE CRYSTAL [J].
BATCHELDER, DN ;
BLOOR, D .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1979, 17 (04) :569-581
[4]   CELLULOSE BIOGENESIS - POLYMERIZATION AND CRYSTALLIZATION ARE COUPLED PROCESSES IN ACETOBACTER-XYLINUM [J].
BENZIMAN, M ;
HAIGLER, CH ;
BROWN, RM ;
WHITE, AR ;
COOPER, KM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1980, 77 (11) :6678-6682
[5]  
BROWN RM, 1989, CELLULOSE STRUCTURAL
[6]   The future prospects of microbial cellulose in biomedical applications [J].
Czaja, Wojciech K. ;
Young, David J. ;
Kawecki, Marek ;
Brown, R. Malcolm, Jr. .
BIOMACROMOLECULES, 2007, 8 (01) :1-12
[7]   FT Raman microscopy of untreated natural plant fibres [J].
Edwards, HGM ;
Farwell, DW ;
Webster, D .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 1997, 53 (13) :2383-2392
[8]   Modelling the crystalline deformation of native and regenerated cellulose [J].
Eichhorn, SJ ;
Davies, GR .
CELLULOSE, 2006, 13 (03) :291-307
[9]   Deformation mechanisms in cellulose fibres, paper and wood [J].
Eichhorn, SJ ;
Sirichaisit, J ;
Young, RJ .
JOURNAL OF MATERIALS SCIENCE, 2001, 36 (13) :3129-3135
[10]   The Young's modulus of a microcrystalline cellulose [J].
Eichhorn, SJ ;
Young, RJ .
CELLULOSE, 2001, 8 (03) :197-207