Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009

被引:113
作者
McGuire, A. David [1 ]
Koven, Charles [2 ]
Lawrence, David M. [3 ]
Clein, Joy S. [4 ]
Xia, Jiangyang [5 ]
Beer, Christian [6 ]
Burke, Eleanor [7 ]
Chen, Guangsheng [8 ]
Chen, Xiaodong [9 ]
Delire, Christine [10 ]
Jafarov, Elchin [11 ]
MacDougall, Andrew H. [12 ]
Marchenko, Sergey [13 ]
Nicolsky, Dmitry [13 ]
Peng, Shushi [14 ,15 ]
Rinke, Annette [16 ,17 ]
Saito, Kazuyuki [18 ]
Zhang, Wenxin [19 ]
Alkama, Ramdane [10 ]
Bohn, Theodore J. [20 ]
Ciais, Philippe [14 ]
Decharme, Bertrand [10 ]
Ekici, Altug [6 ]
Gouttevin, Isabelle [15 ,21 ]
Hajima, Tomohiro [18 ]
Hayes, Daniel J. [8 ]
Ji, Duoying [17 ]
Krinner, Gerhard [15 ]
Lettenmaier, Dennis P. [22 ]
Luo, Yiqi [23 ]
Miller, Paul A. [19 ]
Moore, John C. [17 ]
Romanovsky, Vladimir [13 ]
Schaedel, Christina [24 ,25 ]
Schaefer, Kevin [26 ]
Schuur, Edward A. G. [24 ,25 ]
Smith, Benjamin [19 ]
Sueyoshi, Tetsuo [18 ]
Zhuang, Qianlai [27 ]
机构
[1] Univ Alaska Fairbanks, Alaska Cooperat Fish & Wildlife Res Unit, US Geol Survey, Fairbanks, AK USA
[2] Lawrence Berkeley Natl Lab, Berkeley, CA USA
[3] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA
[4] Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK USA
[5] China Normal Univ, Sch Ecol & Environm Sci, Tiantong Natl Stn Forest Ecosyst, Shanghai, Peoples R China
[6] Stockholm Univ, Dept Environm Sci & Analyt Chem ACES & Bolin Ctr, Stockholm, Sweden
[7] Met Off Hadley Ctr, Exeter, Devon, England
[8] Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA
[9] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA
[10] Meteo France, GAME, CNRS, UMR 3589, Toulouse, France
[11] Univ Colorado Boulder, Inst Arctic Alpine Res, Boulder, CO USA
[12] Univ Victoria, Sch Earth & Ocean Sci, Victoria, BC, Canada
[13] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA
[14] CEA CNRS UVSQ, Lab Sci Climat & Environm, UMR 8212, Gif Sur Yvette, France
[15] Univ Grenoble Alpes, LGGE, UMR 5183, CNRS, BP53, Grenoble, France
[16] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Potsdam, Germany
[17] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing, Peoples R China
[18] Japan Agcy Marine Earth Sci & Technol, Dept Integrated Climate Change Project Res, Yokohama, Kanagawa, Japan
[19] Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden
[20] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA
[21] UR HHLY, Irstea, 5 Rue Doua,CS 70077, Villeurbanne, France
[22] Univ Calif Los Angeles, Dept Geog, Los Angeles, CA 90024 USA
[23] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA
[24] No Arizona Univ, Ctr Ecosyst Sci & Soc, Flagstaff, AZ USA
[25] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ USA
[26] Univ Colorado Boulder, Natl Snow & Ice Data Ctr, Boulder, CO USA
[27] Purdue Univ, W Lafayette, IN 47907 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
carbon cycle; climate change; permafrost; permafrost carbon feedback; sensitivity; soil carbon; NET PRIMARY PRODUCTION; SOIL CARBON; TERRESTRIAL BIOSPHERE; CLIMATE-CHANGE; ARCTIC TUNDRA; ACTIVE LAYER; VEGETATION; CO2; FLUXES; FEEDBACKS;
D O I
10.1002/2016GB005405
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A significant portion of the large amount of carbon (C) currently stored in soils of the permafrost region in the Northern Hemisphere has the potential to be emitted as the greenhouse gases CO2 and CH4 under a warmer climate. In this study we evaluated the variability in the sensitivity of permafrost and C in recent decades among land surface model simulations over the permafrost region between 1960 and 2009. The 15 model simulations all predict a loss of near-surface permafrost (within 3m) area over the region, but there are large differences in the magnitude of the simulated rates of loss among the models (0.2 to 58.8x10(3)km(2)yr(-1)). Sensitivity simulations indicated that changes in air temperature largely explained changes in permafrost area, although interactions among changes in other environmental variables also played a role. All of the models indicate that both vegetation and soil C storage together have increased by 156 to 954TgCyr(-1) between 1960 and 2009 over the permafrost region even though model analyses indicate that warming alone would decrease soil C storage. Increases in gross primary production (GPP) largely explain the simulated increases in vegetation and soil C. The sensitivity of GPP to increases in atmospheric CO2 was the dominant cause of increases in GPP across the models, but comparison of simulated GPP trends across the 1982-2009 period with that of a global GPP data set indicates that all of the models overestimate the trend in GPP. Disturbance also appears to be an important factor affecting C storage, as models that consider disturbance had lower increases in C storage than models that did not consider disturbance. To improve the modeling of C in the permafrost region, there is the need for the modeling community to standardize structural representation of permafrost and carbon dynamics among models that are used to evaluate the permafrost C feedback and for the modeling and observational communities to jointly develop data sets and methodologies to more effectively benchmark models.
引用
收藏
页码:1015 / 1037
页数:23
相关论文
共 122 条
[1]   An evaluation of deep soil configurations in the CLM3 for improved representation of permafrost [J].
Alexeev, V. A. ;
Nicolsky, D. J. ;
Romanovsky, V. E. ;
Lawrence, D. M. .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (09)
[2]  
[Anonymous], 2011, CRUNCEP DATA SET 190
[3]  
[Anonymous], 2006, GEOPHYS RES LETT, DOI DOI 10.1029/2006GL027484
[4]  
Avis CA, 2011, NAT GEOSCI, V4, P444, DOI [10.1038/ngeo1160, 10.1038/NGEO1160]
[5]   Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach [J].
Balshi, Michael S. ;
McGuirez, A. David ;
Duffy, Paul ;
Flannigan, Mike ;
Walsh, John ;
Melillo, Jerry .
GLOBAL CHANGE BIOLOGY, 2009, 15 (03) :578-600
[6]   Harmonized European Long-Term Climate Data for Assessing the Effect of Changing Temporal Variability on Land-Atmosphere CO2 Fluxes [J].
Beer, Christian ;
Weber, Ulrich ;
Tomelleri, Enrico ;
Carvalhais, Nuno ;
Mahecha, Miguel ;
Reichstein, Markus .
JOURNAL OF CLIMATE, 2014, 27 (13) :4815-4834
[7]   Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle [J].
Belshe, E. F. ;
Schuur, E. A. G. ;
Bolker, B. M. .
ECOLOGY LETTERS, 2013, 16 (10) :1307-1315
[8]   The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes [J].
Best, M. J. ;
Pryor, M. ;
Clark, D. B. ;
Rooney, G. G. ;
Essery, R. L. H. ;
Menard, C. B. ;
Edwards, J. M. ;
Hendry, M. A. ;
Porson, A. ;
Gedney, N. ;
Mercado, L. M. ;
Sitch, S. ;
Blyth, E. ;
Boucher, O. ;
Cox, P. M. ;
Grimmond, C. S. B. ;
Harding, R. J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (03) :677-699
[9]   Modeling the large-scale effects of surface moisture heterogeneity on wetland carbon fluxes in theWest Siberian Lowland [J].
Bohn, T. J. ;
Podest, E. ;
Schroeder, R. ;
Pinto, N. ;
McDonald, K. C. ;
Glagolev, M. ;
Filippov, I. ;
Maksyutov, S. ;
Heimann, M. ;
Chen, X. ;
Lettenmaier, D. P. .
BIOGEOSCIENCES, 2013, 10 (10) :6559-6576
[10]   Global evaluation of MTCLIM and related algorithms for forcing of ecological and hydrological models [J].
Bohn, Theodore J. ;
Livneh, Ben ;
Oyler, Jared W. ;
Running, Steve W. ;
Nijssen, Bart ;
Lettenmaier, Dennis P. .
AGRICULTURAL AND FOREST METEOROLOGY, 2013, 176 :38-49