The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology

被引:388
作者
Daniel, H [1 ]
Kottra, G [1 ]
机构
[1] Tech Univ Munich, Inst Nutr Sci, Mol Nutr Unit, D-85354 Freising Weihenstephan, Germany
来源
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY | 2004年 / 447卷 / 05期
关键词
electrogenic transporters; proton oligopeptide cotransporter; SLC15;
D O I
10.1007/s00424-003-1101-4
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Mammalian members of the SLC15 family are electrogenic transporters that utilize the proton-motive force for uphill transport of short chain peptides and peptido-mimetics into a variety of cells. The prototype transporters of this family are PEPT1 (SLC15A1) and PEPT2 (SLC15A2), which mediate the uptake of peptide substrates into intestinal and renal epithelial cells. More recently, other sites of functional expression of the two proteins have been identified such as bile duct epithelium (PEPT1), glia cells and epithelia of the choroid plexus, lung and mammary gland (PEPT2). Both proteins can transport essentially every possible di- and tripeptide regardless of the substrate's net charge, but operate stereoselectively. Based on peptide-like structures, various drugs and prodrugs are transported as well, allowing efficient intestinal absorption of the compounds via PEPT1. In kidney tubules both peptide transporters can mediate the renal reabsorption of the filtered compounds thus affecting their pharmacokinetics. Recently, two new peptide transporters, PHT1 (SLC15A4) and PHT2 (SLC15A3), were identified in mammals. They possess an overall amino acid identity with the PEPT-series of 20% to 25%. PHT1 and PHT2 were shown to transport free histidine and certain di- and tripeptides, but it is not yet clear whether they are located on the plasma membrane or represent lysosomal transporters for the proton-dependent export of histidine and dipeptides from lysosomal protein degradation into the cytosol.
引用
收藏
页码:610 / 618
页数:9
相关论文
共 78 条
[1]   Thyroid hormone regulates the activity and expression of the peptide transporter PEPT1 in Caco-2 cells [J].
Ashida, K ;
Katsura, T ;
Motohashi, H ;
Saito, H ;
Inui, KI .
AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 2002, 282 (04) :G617-G623
[2]  
Bailey PD, 2000, ANGEW CHEM INT EDIT, V39, P506
[3]   Distribution of peptide transporter PEPT2 mRNA in the rat nervous system [J].
Berger, UV ;
Hediger, MA .
ANATOMY AND EMBRYOLOGY, 1999, 199 (05) :439-449
[4]  
Bockman DE, 1997, INT J PANCREATOL, V22, P221
[5]   Structure, function, and molecular modeling approaches to the study of the intestinal dipeptide transporter PepT1 [J].
Bolger, MB ;
Haworth, IS ;
Yeung, AK ;
Ann, D ;
von Grafenstein, H ;
Hamm-Alvarez, S ;
Okamoto, CT ;
Kim, KJ ;
Basu, SK ;
Wu, S ;
Lee, VHL .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1998, 87 (11) :1286-1291
[6]   Expression cloning and functional characterization of the kidney cortex high-affinity proton-coupled peptide transporter [J].
Boll, M ;
Herget, M ;
Wagener, M ;
Weber, WM ;
Markovich, D ;
Biber, J ;
Clauss, W ;
Murer, H ;
Daniel, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (01) :284-289
[7]   EXPRESSION CLONING OF A CDNA FROM RABBIT SMALL-INTESTINE RELATED TO PROTON-COUPLED TRANSPORT OF PEPTIDES, BETA-LACTAM ANTIBIOTICS AND ACE-INHIBITORS [J].
BOLL, M ;
MARKOVICH, D ;
WEBER, WM ;
KORTE, H ;
DANIEL, H ;
MURER, H .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1994, 429 (01) :146-149
[8]  
Botka CW, 2000, AAPS PHARMSCI, V2
[9]   PepT1-mediated fMLP transport induces intestinal inflammation in vivo [J].
Buyse, M ;
Tsocas, A ;
Walker, F ;
Merlin, D ;
Bado, A .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2002, 283 (06) :C1795-C1800
[10]   Functional roles of histidine and tyrosine residues in the H+-peptide transporter PepT1 [J].
Chen, XZ ;
Steel, A ;
Hediger, MA .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2000, 272 (03) :726-730