Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach

被引:43
作者
Melin, P [1 ]
Castillo, O [1 ]
机构
[1] Tijuana Inst Technol, Dept Comp Sci, Chula Vista, CA 91909 USA
关键词
battery charging; fuzzy control; neural control; neuro-fuzzy control;
D O I
10.1109/41.954559
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes different hybrid approaches for controlling the battery charging process. The hybrid approaches combine soft computing techniques to achieve the goal of controlling the temperature of the battery during the electrochemical charging process. We have reduced the time required for charging a battery with the use of fuzzy logic, neural networks, and genetic algorithms. In the neuro-fuzzy-genetic approach, neural networks are used for modeling the electrochemical process, fuzzy logic is used for controlling the process, and genetic algorithms are used to optimize the fuzzy system.
引用
收藏
页码:951 / 955
页数:5
相关论文
共 15 条
[1]  
Bode H., 1977, LEAD ACID BATTERIES
[2]  
Castillo O, 1998, 1998 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AT THE IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE - PROCEEDINGS, VOL 1-2, P1182, DOI 10.1109/FUZZY.1998.686286
[3]  
CASTILLO O, 1999, P ROB APPL, P270
[4]  
HEHNER N, 1985, STORAGE BATTERY MANU
[5]  
Jang J-S.R., 1997, NEUROFUZZY SOFT COMP
[6]  
MAN KF, 1999, GENETIC ALGORITHMS
[7]  
Melin P, 1998, IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, P106, DOI 10.1109/IJCNN.1998.682245
[8]  
MELIN P, 1999, P INT SYST CONTR SAN, P397
[9]  
Melin P, 1998, P IPMU 98, V1, P475
[10]  
Miller WT., 1995, NEURAL NETWORKS CONT