Characterization of mutants in Arabidopsis showing increased sugar-specific gene expression, growth, and developmental responses

被引:71
作者
Baier, M [1 ]
Hemmann, G [1 ]
Holman, R [1 ]
Corke, F [1 ]
Card, R [1 ]
Smith, C [1 ]
Rook, F [1 ]
Bevan, MW [1 ]
机构
[1] John Innes Ctr Plant Sci Res, Dept Cell & Dev Biol, Norwich NR4 7UH, Norfolk, England
关键词
D O I
10.1104/pp.103.031674
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Sugars such as sucrose serve dual functions as transported carbohydrates in vascular plants and as signal molecules that regulate gene expression and plant development. Sugar-mediated signals indicate carbohydrate availability and regulate metabolism by co-coordinating sugar production and mobilization with sugar usage and storage. Analysis of mutants with altered responses to sucrose and glucose has shown that signaling pathways mediated by sugars and abscisic acid interact to regulate seedling development and gene expression. Using a novel screen for sugar-response mutants based on the activity of a luciferase reporter gene under the control of the sugar-inducible promoter of the ApL3 gene, we have isolated high sugar-response (hsr) mutants that exhibit elevated luciferase activity and ApL3 expression in response to low sugar concentrations. Our characterization of these hsr mutants suggests that they affect the regulation of sugar-induced and sugar-repressed processes controlling gene expression, growth, and development in Arabidopsis. In contrast to some other sugar-response mutants, they do not exhibit altered responses to ethylene or abscisic acid, suggesting that the hsr mutants may have a specifically increased sensitivity to sugars. Further characterization of the hsr mutants will lead to greater understanding of regulatory pathways involved in metabolite signaling.
引用
收藏
页码:81 / 91
页数:11
相关论文
共 53 条
  • [1] EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis
    Alonso, JM
    Hirayama, T
    Roman, G
    Nourizadeh, S
    Ecker, JR
    [J]. SCIENCE, 1999, 284 (5423) : 2148 - 2152
  • [2] Arenas-Huertero F, 2000, GENE DEV, V14, P2085
  • [3] COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS
    ARNON, DI
    [J]. PLANT PHYSIOLOGY, 1949, 24 (01) : 1 - 15
  • [4] Antisense suppression of 2-cysteine peroxiredoxin in arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism
    Baier, M
    Noctor, G
    Foyer, CH
    Dietz, KJ
    [J]. PLANT PHYSIOLOGY, 2000, 124 (02) : 823 - 832
  • [5] Interactions between abscisic acid and ethylene signaling cascades
    Beaudoin, N
    Serizet, C
    Gosti, F
    Giraudat, J
    [J]. PLANT CELL, 2000, 12 (07) : 1103 - 1115
  • [6] ASSIGNMENT OF 30 MICROSATELLITE LOCI TO THE LINKAGE MAP OF ARABIDOPSIS
    BELL, CJ
    ECKER, JR
    [J]. GENOMICS, 1994, 19 (01) : 137 - 144
  • [7] ARABIDOPSIS-THALIANA ATVSP IS HOMOLOGOUS TO SOYBEAN VSPA AND VSPB, GENES ENCODING VEGETATIVE STORAGE PROTEIN ACID-PHOSPHATASES, AND IS REGULATED SIMILARLY BY METHYL JASMONATE, WOUNDING, SUGARS, LIGHT AND PHOSPHATE
    BERGER, S
    BELL, E
    SADKA, A
    MULLET, JE
    [J]. PLANT MOLECULAR BIOLOGY, 1995, 27 (05) : 933 - 942
  • [8] INSENSITIVITY TO ETHYLENE CONFERRED BY A DOMINANT MUTATION IN ARABIDOPSIS-THALIANA
    BLEECKER, AB
    ESTELLE, MA
    SOMERVILLE, C
    KENDE, H
    [J]. SCIENCE, 1988, 241 (4869) : 1086 - 1089
  • [9] A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions
    Cheng, WH
    Endo, A
    Zhou, L
    Penney, J
    Chen, HC
    Arroyo, A
    Leon, P
    Nambara, E
    Asami, T
    Seo, M
    Koshiba, T
    Sheen, J
    [J]. PLANT CELL, 2002, 14 (11) : 2723 - 2743
  • [10] Sucrose is a signal molecule in assimilate partitioning
    Chiou, TJ
    Bush, DR
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (08) : 4784 - 4788