A protocol for building and evaluating predictors of disease state based on microarray data

被引:100
作者
Wessels, LFA
Reinders, MJT
Hart, AAM
Veenman, CJ
Dai, H
He, YD
van't Veer, LJ
机构
[1] Delft Univ Technol, Fac Elect Engn Math & Comp Sci, Dept Mediamat, NL-2628 CD Delft, Netherlands
[2] Netherlands Canc Inst, Dept Pathol, NL-1066 CX Amsterdam, Netherlands
[3] Netherlands Canc Inst, Dept Radiotherapy, NL-1066 CX Amsterdam, Netherlands
[4] Rosetta Inpharmat LLC, Merck & Co Inc, Seattle, WA 98109 USA
关键词
D O I
10.1093/bioinformatics/bti429
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Microarray gene expression data are increasingly employed to identify sets of marker genes that accurately predict disease development and outcome in cancer. Many computational approaches have been proposed to construct such predictors. However, there is, as yet, no objective way to evaluate whether a new approach truly improves on the current state of the art. In addition no 'standard' computational approach has emerged which enables robust outcome prediction. Results: An important contribution of this work is the description of a principled training and validation protocol, which allows objective evaluation of the complete methodology for constructing a predictor. We review the possible choices of computational approaches, with specific emphasis on predictor choice and reporter selection strategies. Employing this training-validation protocol, we evaluated different reporter selection strategies and predictors on six gene expression datasets of varying degrees of difficulty. We demonstrate that simple reporter selection strategies (forward filtering and shrunken centroids) work surprisingly well and outperform partial least squares in four of the six datasets. Similarly, simple predictors, such as the nearest mean classifier, outperform more complex classifiers. Our training-validation protocol provides a robust methodology to evaluate the performance of new computational approaches and to objectively compare outcome predictions on different datasets.
引用
收藏
页码:3755 / 3762
页数:8
相关论文
共 32 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]   Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays [J].
Alon, U ;
Barkai, N ;
Notterman, DA ;
Gish, K ;
Ybarra, S ;
Mack, D ;
Levine, AJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (12) :6745-6750
[3]   Selection bias in gene extraction on the basis of microarray gene-expression data [J].
Ambroise, C ;
McLachlan, GJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (10) :6562-6566
[4]   The secular variations of skull characters in four series of Egyptian skulls [J].
Barnard, MM .
ANNALS OF EUGENICS, 1935, 6 :352-371
[5]   Tissue classification with gene expression profiles [J].
Ben-Dor, A ;
Bruhn, L ;
Friedman, N ;
Nachman, I ;
Schummer, M ;
Yakhini, Z .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (3-4) :559-583
[6]   On the optimality of the simple Bayesian classifier under zero-one loss [J].
Domingos, P ;
Pazzani, M .
MACHINE LEARNING, 1997, 29 (2-3) :103-130
[7]  
Duda R. O., 2000, PATTERN CLASSIFICATI
[8]   Comparison of discrimination methods for the classification of tumors using gene expression data [J].
Dudoit, S ;
Fridlyand, J ;
Speed, TP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) :77-87
[10]   The use of multiple measurements in taxonomic problems [J].
Fisher, RA .
ANNALS OF EUGENICS, 1936, 7 :179-188