Mean-field variational approximate Bayesian inference for latent variable models

被引:41
作者
Consonni, Guido [2 ]
Marin, Jean-Michel [1 ]
机构
[1] Univ Orsay, Lab Math Bat 425, INRIA FUTURS Projects SELECT, F-91405 Orsay, France
[2] Univ Pavia, Dept Econ & Quantitat Methods, I-27100 Pavia, Italy
关键词
bayesian inference; Bayesian probit model; Gibbs sampling; latent variable models; marginal distribution; mean-field variational methods;
D O I
10.1016/j.csda.2006.10.028
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The ill-posed nature of missing variable models offers a challenging testing ground for new computational techniques. This is the case for the mean-field variational Bayesian inference. The behavior of this approach in the setting of the Bayesian probit model is illustrated. It is shown that the mean-field variational method always underestimates the posterior variance and, that, for small sample sizes, the mean-field variational approximation to the posterior location could be poor. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:790 / 798
页数:9
相关论文
共 22 条
[1]   BAYESIAN-ANALYSIS OF BINARY AND POLYCHOTOMOUS RESPONSE DATA [J].
ALBERT, JH ;
CHIB, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (422) :669-679
[2]  
[Anonymous], 1984, INTRO LATENT VARIABL
[3]  
BEAL M, 2002, THESIS
[4]  
Beal M. J., 2002, BAYESIAN STAT, V7
[5]  
Casella G., 1999, MONTE CARLO STAT MET
[6]  
Cowell R. G., 1999, PROBABILISTIC NETWOR
[7]  
Doucet A., 2001, SEQUENTIAL MONTE CAR, V1, DOI [10.1007/978-1-4757-3437-9, DOI 10.1007/978-1-4757-3437-9]
[8]  
GHAHRAMANI Z, 2001, ADV NEURAL INFORM PR, V13
[9]  
HUMPHREYS K, 2001, ADV MEAN FIELD METHO
[10]  
HUMPHREYS K, 2000, COMPSTAT 2000 P COMP