Wavelet network-based detection and classification of transients

被引:58
作者
Angrisani, L [1 ]
Daponte, P
D'Apuzzo, M
机构
[1] Univ Naples Federico II, Dipartimento Informat & Sistemist, Naples, Italy
[2] Univ Sannio, Fac Ingn, Benevento, Italy
[3] Univ Naples Federico II, Dipartimento Ingn Elettr, Naples, Italy
关键词
power quality; transient signal classification; transient signal detection; wavelet network; wavelet transform;
D O I
10.1109/19.963220
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A methodology is presented for developing a digital signal-processing architecture capable of simultaneous and automated detection and classification of transient signals. The basic unit of the aforementioned architecture is the wavelet network, which combines the ability of the wavelet transform of analyzing nonstationary signals with the classification capability of artificial neural networks. By exploiting the modularity as well as original strategies concerning wavelet network implementation and training, the method succeeds in enhancing the classification performance with respect to other available solutions.
引用
收藏
页码:1425 / 1435
页数:11
相关论文
共 28 条
[1]   Measurement method based on the wavelet transform for power quality analysis [J].
Angrisani, L ;
Daponte, P ;
D'Apuzzo, MD ;
Testa, A .
IEEE TRANSACTIONS ON POWER DELIVERY, 1998, 13 (04) :990-998
[2]  
Angrisani L., 1998, Measurement, V24, P9, DOI 10.1016/S0263-2241(98)00033-5
[3]  
Angrisani L., 1999, Measurement, V26, P91, DOI 10.1016/S0263-2241(99)00019-6
[4]  
Angrisani L., 1999, Measurement, V25, P19, DOI 10.1016/S0263-2241(98)00063-3
[5]  
Angrisani L., 1999, Measurement, V25, P31, DOI 10.1016/S0263-2241(98)00064-5
[6]  
ANGRISANI L, 2000, P 16 IMEKO WORLD C W, V4, P19
[7]  
ANGRISANI L, 2000, IEEE T INSTRUM MEAS, V49
[8]  
ANGRISIANI L, 1997, MEAS J, V20, P226
[9]  
[Anonymous], 1994, NEURAL NETWORKS
[10]  
Arrillaga J., 2000, Power System Quality Assessment