Class-information-incorporated principal component analysis

被引:8
作者
Chen, SC [1 ]
Sun, TK [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Comp Sci & Engn, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
principal component analysis (PCA); class-information-incorporated PCA (CIPCA); pattern recognition;
D O I
10.1016/j.neucom.2005.06.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Principal component analysis (PCA) is one of the most popular feature extraction methods in pattern recognition and can obtain a set of so-needed projection directions or vectors by maximizing the projected variance of a given training dataset in an unsupervised learning way, meaning that PCA does not sufficiently use the class label of given data in feature extraction. In this paper, a class-information-incorporated PCA (CIPCA) is presented with two objectives: one is to sufficiently utilize a given class label in feature extraction and the other is to still follow the same simple mathematical formulation as PCA. The experimental results on 13 benchmark datasets show its feasibility and effectiveness. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:216 / 223
页数:8
相关论文
共 12 条
  • [1] Unsupervised neural network learning procedures for feature extraction and classification
    Becker, S
    Plumbley, M
    [J]. APPLIED INTELLIGENCE, 1996, 6 (03) : 185 - 203
  • [2] Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection
    Belhumeur, PN
    Hespanha, JP
    Kriegman, DJ
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) : 711 - 720
  • [3] Subpattern-based principle component analysis
    Chen, SC
    Zhu, YL
    [J]. PATTERN RECOGNITION, 2004, 37 (05) : 1081 - 1083
  • [4] Duda R.O., 2001, Pattern Classification, V2nd
  • [5] An improved face recognition technique based on modular PCA approach
    Gottumukkal, R
    Asari, VK
    [J]. PATTERN RECOGNITION LETTERS, 2004, 25 (04) : 429 - 436
  • [6] Jolliffe I. T., 1986, Principal Component Analysis, DOI [DOI 10.1016/0169-7439(87)80084-9, 10.1007/0-387-22440-8_13, DOI 10.1007/0-387-22440-8_13]
  • [7] APPLICATION OF THE KARHUNEN-LOEVE PROCEDURE FOR THE CHARACTERIZATION OF HUMAN FACES
    KIRBY, M
    SIROVICH, L
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (01) : 103 - 108
  • [8] McLachlan, 2004, DISCRIMINANT ANAL ST
  • [9] Soft margins for AdaBoost
    Rätsch, G
    Onoda, T
    Müller, KR
    [J]. MACHINE LEARNING, 2001, 42 (03) : 287 - 320
  • [10] Adaptively weighted sub-pattern PCA for face recognition
    Tan, KR
    Chen, SC
    [J]. NEUROCOMPUTING, 2005, 64 : 505 - 511