In silico screening of zeolite membranes for CO2 capture

被引:283
作者
Krishna, Rajamani [1 ]
van Baten, Jasper M. [1 ]
机构
[1] Univ Amsterdam, Vant Hoff Inst Mol Sci, NL-1098 XH Amsterdam, Netherlands
关键词
Zeolites; Monte Carlo simulations; Molecular dynamics; Correlation effects; CO2; capture; Adsorption; Maxwell-Stefan diffusion; METAL-ORGANIC FRAMEWORKS; COMPARATIVE MOLECULAR SIMULATION; BINARY-MIXTURE DIFFUSION; DIFFERENT SI/AL RATIOS; PERMEATION PROPERTIES; DYNAMICS SIMULATIONS; MODELING PERMEATION; CH4/N-2; SEPARATION; SAPO-34; MEMBRANE; POROUS MATERIALS;
D O I
10.1016/j.memsci.2010.05.032
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The separation of CO2/H-2, CO2/CH4, and CO2/N-2 mixtures is of practical importance for CO2 capture and other applications in the processing industries. Use of membranes with microporous layers of zeolites, metal-organic frameworks (MOFs), and zeolitic imidazolate frameworks (ZIFs) offer considerable promise for use in such separations. In view of the extremely wide variety of available microporous structures, there is a need for a systematic screening of potential candidates in order to obtain the best permeation selectivities, S-perm. The permeation selectivity is a product of the adsorption selectivity, S-ads, and the diffusion selectivity. S-diff, i.e. S-perm = S-ads x S-diff. For maximizing S-perm, we need to choose materials for which S-ads and S-diff complement each other. For a wide variety of zeolites, we have used Configurational-Bias Monte Carlo (CBMC) simulations of mixture adsorption isotherms, along with Molecular Dynamics (MD) simulations of diffusivities for three binary mixtures, CO2/H-2, CO2/CH4, and CO2/N-2, to calculate S-ads. S-diff, and S-perm. These simulation results provide insights into the influence of pore size, pore topology and pore connectivity that influences each of the three selectivities. In particular, we emphasize the important role of correlations in the diffusion behaviors within microporous materials. Furthermore, we have constructed Robeson plots for each of the separations in order to provide generic guidelines to the choice of materials that offer the appropriate compromise between S-perm and the membrane permeability. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:323 / 333
页数:11
相关论文
共 62 条
[1]   Tuning MOF CO2 Adsorption Properties via Cation Exchange [J].
An, Jihyun ;
Rosi, Nathaniel L. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (16) :5578-+
[2]   Molecular screening of metal-organic frameworks for CO2 storage [J].
Babarao, Ravichandar ;
Jiang, Jianwen .
LANGMUIR, 2008, 24 (12) :6270-6278
[3]   Diffusion and separation of CO2 and CH4 in silicalite, C168 schwarzite,and IRMOF-1:: A comparative study from molecular dynamics simulation [J].
Babarao, Ravichandar ;
Jiang, Jianwen .
LANGMUIR, 2008, 24 (10) :5474-5484
[4]   Unprecedentedly High Selective Adsorption of Gas Mixtures in rho Zeolite-like Metal-Organic Framework: A Molecular Simulation Study [J].
Babarao, Ravichandar ;
Jiang, Jianwen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (32) :11417-11425
[5]   Separation of CO2/N2 mixtures using MFI-type zeolite membranes [J].
Bernal, MP ;
Coronas, J ;
Menéndez, M ;
Santamaría, J .
AICHE JOURNAL, 2004, 50 (01) :127-135
[6]   Zeolitic Imidazolate Framework Membrane with Molecular Sieving Properties by Microwave-Assisted Solvothermal Synthesis [J].
Bux, Helge ;
Liang, Fangyi ;
Li, Yanshuo ;
Cravillon, Janosch ;
Wiebcke, Michael ;
Caro, Juergen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (44) :16000-+
[7]   Zeolite membranes - Recent developments and progress [J].
Caro, Juergen ;
Noack, Manfred .
MICROPOROUS AND MESOPOROUS MATERIALS, 2008, 115 (03) :215-233
[8]   Predictions of selectivity and flux for CH4/H2 separations using single walled carbon nanotubes as membranes [J].
Chen, HB ;
Sholl, DS .
JOURNAL OF MEMBRANE SCIENCE, 2006, 269 (1-2) :152-160
[9]   Propane/Propylene Diffusion in Zeolites: Framework Dynamics [J].
Combariza, Aldo F. ;
Sastre, German ;
Corma, Avelino .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (26) :11246-11253
[10]   An Amine-Functionalized MIL-53 Metal-Organic Framework with Large Separation Power for CO2 and CH4 [J].
Couck, Sarah ;
Denayer, Joeri F. M. ;
Baron, Gino V. ;
Remy, Tom ;
Gascon, Jorge ;
Kapteijn, Freek .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (18) :6326-+