Quantum topological phase transition at the microscopic level

被引:87
作者
Castelnovo, Claudio [1 ]
Chamon, Claudio [2 ]
机构
[1] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.77.054433
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study a quantum phase transition between a phase which is topologically ordered and one which is not. We focus on a spin model, an extension of the toric code, for which we obtain the exact ground state for all values of the coupling constant that takes the system across the phase transition. We compute the entanglement and the topological entropy of the system as a function of this coupling constant and show that the topological entropy remains constant all the way up to the critical point and jumps to zero beyond it. Despite the jump in the topological entropy, the transition is second order as detected via local observables.
引用
收藏
页数:14
相关论文
共 23 条
[1]   Topological order and conformal quantum critical points [J].
Ardonne, E ;
Fendley, P ;
Fradkin, E .
ANNALS OF PHYSICS, 2004, 310 (02) :493-551
[2]   FRACTIONAL STATISTICS AND THE QUANTUM HALL-EFFECT [J].
AROVAS, D ;
SCHRIEFFER, JR ;
WILCZEK, F .
PHYSICAL REVIEW LETTERS, 1984, 53 (07) :722-723
[3]  
Baxter R J., 1982, EXACTLY SOLVED MODEL
[4]   From quantum mechanics to classical statistical physics: Generalized Rokhsar-Kivelson Hamiltonians and the "Stochastic Matrix Form" decomposition [J].
Castelnovo, C ;
Chamon, C ;
Mudry, C ;
Pujol, P .
ANNALS OF PHYSICS, 2005, 318 (02) :316-344
[5]   Topological order and topological entropy in classical systems [J].
Castelnovo, Claudio ;
Chamon, Claudio .
PHYSICAL REVIEW B, 2007, 76 (17)
[6]   Entanglement entropy of 2D conformal quantum critical points: Hearing the shape of a quantum drum [J].
Fradkin, Eduardo ;
Moore, Joel E. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[7]   Topological entanglement entropy in the quantum dimer model on the triangular lattice [J].
Furukawa, Shunsuke ;
Misguich, Gregoire .
PHYSICAL REVIEW B, 2007, 75 (21)
[8]   PERIODIC LAUGHLIN-JASTROW WAVE-FUNCTIONS FOR THE FRACTIONAL QUANTIZED HALL-EFFECT [J].
HALDANE, FDM ;
REZAYI, EH .
PHYSICAL REVIEW B, 1985, 31 (04) :2529-2531
[9]   Bipartite entanglement and entropic boundary law in lattice spin systems [J].
Hamma, A ;
Ionicioiu, R ;
Zanardi, P .
PHYSICAL REVIEW A, 2005, 71 (02)
[10]  
HAMMA A, IN PRESS PHYS REV LE