Rapid Cell Population Identification in Flow Cytometry Data

被引:153
作者
Aghaeepour, Nima [2 ,3 ]
Nikolic, Radina [2 ,4 ]
Hoos, Holger H. [5 ]
Brinkman, Ryan R. [1 ,2 ]
机构
[1] Univ British Columbia, Dept Med Genet, Vancouver, BC V5Z 1M9, Canada
[2] BC Canc Agcy, Terry Fox Lab, Vancouver, BC, Canada
[3] Univ British Columbia, Dept Bioinformat, Vancouver, BC V5Z 1M9, Canada
[4] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
[5] Univ British Columbia, Dept Comp Sci, Vancouver, BC V5Z 1M9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
flow cytometry; data analysis; cluster analysis; model selection; bioinformatics; statistics; AUTOMATION; REDUCTION;
D O I
10.1002/cyto.a.21007
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We have developed flowMeans, a time-efficient and accurate method for automated identification of cell populations in flow cytometry (FCM) data based on K-means clustering. Unlike traditional K-means, flowMeans can identify concave cell populations by modelling a single population with multiple clusters. flowMeans uses a change point detection algorithm to determine the number of sub-populations, enabling the method to be used in high throughput FCM data analysis pipelines. Our approach compares favorably to manual analysis by human experts and current state-of-the-art automated gating algorithms. flowMeans is freely available as an open source R package through Bioconductor. (C) 2010 International Society for Advancement of Cytometry
引用
收藏
页码:6 / 13
页数:8
相关论文
共 26 条
[1]  
Aghaeepour N, 2009, CLUST THEOR WORKSH N
[2]  
Aghaeepour N, 2010, FLOWMEANS PACKAGE BI
[3]  
[Anonymous], 2000, ICML
[4]  
Bashashati Ali, 2009, Advances in Bioinformatics, V2009, P584603, DOI 10.1155/2009/584603
[5]   Combining Mixture Components for Clustering [J].
Baudry, Jean-Patrick ;
Raftery, Adrian E. ;
Celeux, Gilles ;
Lo, Kenneth ;
Gottardo, Raphael .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (02) :332-353
[6]   Toward automation of flow data analysis [J].
Bocsi, Jozef ;
Tarnok, Attila .
CYTOMETRY PART A, 2008, 73A (08) :679-680
[7]   High-content flow cytometry and temporal data analysis for defining a cellular signature graft-versus-host disease [J].
Brinkman, Ryan Remy ;
Gasparetto, Maura ;
Lee, Shang-Jung Jessica ;
Ribickas, Albert J. ;
Perkins, Janelle ;
Janssen, William ;
Smiley, Renee ;
Smith, Clay .
BIOLOGY OF BLOOD AND MARROW TRANSPLANTATION, 2007, 13 (06) :691-700
[8]   Good Cell, Bad Cell: Flow Cytometry Reveals T-cell Subsets Important in HIV Disease [J].
Chattopadhyay, Pratip K. ;
Roederer, Mario .
CYTOMETRY PART A, 2010, 77A (07) :614-622
[9]   Feature significance for multivariate kernel density estimation [J].
Duong, Tam ;
Cowling, Arianna ;
Koch, Inge ;
Wand, M. P. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (09) :4225-4242
[10]  
Finak Greg, 2009, Advances in Bioinformatics, V2009, P247646, DOI 10.1155/2009/247646