Cerebellar long-term depression: Characterization, signal transduction, and functional roles

被引:624
作者
Ito, M [1 ]
机构
[1] RIKEN, Brain Sci Inst, Wako, Saitama 3510198, Japan
关键词
D O I
10.1152/physrev.2001.81.3.1143
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Cerebellar Purkinje cells exhibit a unique type of synaptic plasticity, namely, long-term depression (LTD). When two inputs to a Purkinje cell, one from a climbing fiber and the other from a set of granule cell axons, are repeatedly associated, the input efficacy of the granule cell axons in exciting the Purkinje cell is persistently depressed. Section I of this review briefly describes the history of research around LTD, and section II specifies physiological characteristics of LTD. Sections III and IV then review the massive data accumulated during the past two decades, which have revealed complex networks of signal transduction underlying LTD. Section III deals with a variety of first messengers, receptors, ion channels, transporters, G proteins, and phospholipases. Section IV covers second messengers, protein kinases, phosphatases and other elements, eventually leading to inactivation of DL-alpha -amino-3-hydroxy-5-methyl-4-isoxazolone-propionate-selective glutamate receptors that mediate granule cell-to-Purkinje cell transmission. Section V defines roles of LTD in the light of the microcomplex concept of the cerebellum as functionally eliminating those synaptic connections associated with errors during repeated exercises, while preserving other connections leading to the successful execution of movements. Section VI examines the validity of this microcomplex concept based on the data collected from recent numerous studies of various forms of motor learning in ocular reflexes, eye-blink conditioning, posture, locomotion, and hand/arm movements. Section VII emphasizes the importance of integrating studies on LTD and learning and raises future possibilities of extending cerebellar research to reveal memory mechanisms of implicit learning in general.
引用
收藏
页码:1143 / 1195
页数:53
相关论文
共 585 条
[1]   LOCALIZATION OF MESSENGER-RNA FOR PROTEIN PHOSPHATASE 2A IN THE BRAIN OF ADULT-RATS [J].
ABE, H ;
SHIMA, H ;
SEKIGUCHI, M ;
GUO, H ;
NAGAO, M ;
TAMURA, S ;
KONDO, H .
MOLECULAR BRAIN RESEARCH, 1994, 22 (1-4) :139-143
[2]   MODIFIED HIPPOCAMPAL LONG-TERM POTENTIATION IN PKC-GAMMA-MUTANT MICE [J].
ABELIOVICH, A ;
CHEN, C ;
GODA, Y ;
SILVA, AJ ;
STEVENS, CF ;
TONEGAWA, S .
CELL, 1993, 75 (07) :1253-1262
[3]   INSULIN-LIKE GROWTH-FACTOR I-IMMUNOREACTIVE PEPTIDE IN ADULT HUMAN CEREBELLAR PURKINJE-CELLS - COLOCALIZATION WITH LOW-AFFINITY NERVE GROWTH-FACTOR RECEPTOR [J].
AGUADO, F ;
SANCHEZFRANCO, F ;
RODRIGO, J ;
CACICEDO, L ;
MARTINEZMURILLO, R .
NEUROSCIENCE, 1994, 59 (03) :641-650
[4]   SUBCELLULAR-LOCALIZATION OF INSULIN-LIKE GROWTH FACTOR-I (IGF-I) IN PURKINJE-CELLS OF THE ADULT-RAT - AN IMMUNOCYTOCHEMICAL STUDY [J].
AGUADO, F ;
SANCHEZFRANCO, F ;
CACIDEDO, L ;
FERNANDEZ, T ;
RODRIGO, J ;
MARTINEZMURILLO, R .
NEUROSCIENCE LETTERS, 1992, 135 (02) :171-174
[5]   A late phase of cerebellar long-term depression requires activation of CaMKIV and CREB [J].
Ahn, S ;
Ginty, DD ;
Linden, DJ .
NEURON, 1999, 23 (03) :559-568
[6]   REDUCED HIPPOCAMPAL LONG-TERM POTENTIATION AND CONTEXT-SPECIFIC DEFICIT IN ASSOCIATIVE LEARNING IN MGLUR1 MUTANT MICE [J].
AIBA, A ;
CHEN, C ;
HERRUP, K ;
ROSENMUND, C ;
STEVENS, CF ;
TONEGAWA, S .
CELL, 1994, 79 (02) :365-375
[7]   Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene [J].
Airaksinen, MS ;
Eilers, J ;
Garaschuk, O ;
Thoenen, H ;
Konnerth, A ;
Meyer, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (04) :1488-1493
[8]   Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons [J].
Aizenman, CD ;
Linden, DJ .
NATURE NEUROSCIENCE, 2000, 3 (02) :109-111
[9]   Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum [J].
Aizenman, CD ;
Linden, DJ .
JOURNAL OF NEUROPHYSIOLOGY, 1999, 82 (04) :1697-1709
[10]   Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse [J].
Aizenman, CD ;
Manis, PB ;
Linden, DJ .
NEURON, 1998, 21 (04) :827-835