Role of mitochondrial dysfunction in insulin resistance

被引:815
作者
Kim, Jeong-A [1 ,3 ,4 ]
Wei, Yongzhong [1 ,3 ,4 ]
Sowers, James R. [1 ,2 ,3 ,4 ]
机构
[1] Univ Missouri, Columbia Sch Med, Dept Internal Med, Columbia, MO USA
[2] Univ Missouri, Columbia Sch Med, Dept Med Pharmacol & Physiol, Columbia, MO USA
[3] Univ Missouri, Columbia Sch Med, Diabetes & Cardiovasc Ctr, Columbia, MO USA
[4] Harry S Truman Mem Vet Hosp, Columbia, MO 65201 USA
关键词
mitochondrial dysfunction; insulin resistance; cardiovascular disease;
D O I
10.1161/CIRCRESAHA.107.165472
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Insulin resistance is characteristic of obesity, type 2 diabetes, and components of the cardiometabolic syndrome, including hypertension and dyslipidemia, that collectively contribute to a substantial risk for cardiovascular disease. Metabolic actions of insulin in classic insulin target tissues (eg, skeletal muscle, fat, and liver), as well as actions in nonclassic targets (eg, cardiovascular tissue), help to explain why insulin resistance and metabolic dysregulation are central in the pathogenesis of the cardiometabolic syndrome and cardiovascular disease. Glucose and lipid metabolism are largely dependent on mitochondria to generate energy in cells. Thereby, when nutrient oxidation is inefficient, the ratio of ATP production/oxygen consumption is low, leading to an increased production of superoxide anions. Reactive oxygen species formation may have maladaptive consequences that increase the rate of mutagenesis and stimulate proinflammatory processes. In addition to reactive oxygen species formation, genetic factors, aging, and reduced mitochondrial biogenesis all contribute to mitochondrial dysfunction. These factors also contribute to insulin resistance in classic and nonclassic insulin target tissues. Insulin resistance emanating from mitochondrial dysfunction may contribute to metabolic and cardiovascular abnormalities and subsequent increases in cardiovascular disease. Furthermore, interventions that improve mitochondrial function also improve insulin resistance. Collectively, these observations suggest that mitochondrial dysfunction may be a central cause of insulin resistance and associated complications. In this review, we discuss mechanisms of mitochondrial dysfunction related to the pathophysiology of insulin resistance in classic insulin-responsive tissue, as well as cardiovascular tissue.
引用
收藏
页码:401 / 414
页数:14
相关论文
共 189 条
[1]   Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver [J].
Abel, ED ;
Peroni, O ;
Kim, JK ;
Kim, YB ;
Boss, O ;
Hadro, E ;
Minnemann, T ;
Shulman, GI ;
Kahn, BB .
NATURE, 2001, 409 (6821) :729-733
[2]   Enhanced insulin-stimulated activation of phosphatidylinositol 3-kinase in the liver of high-fat-fed rats [J].
Anai, M ;
Funaki, M ;
Ogihara, T ;
Kanda, A ;
Onishi, Y ;
Sakoda, H ;
Inukai, K ;
Nawano, M ;
Fukushima, Y ;
Yazaki, Y ;
Kikuchi, M ;
Oka, Y ;
Asano, T .
DIABETES, 1999, 48 (01) :158-169
[3]   Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle [J].
Arany, Z ;
He, HM ;
Lin, JD ;
Hoyer, K ;
Handschin, C ;
Toka, O ;
Ahmad, F ;
Matsui, T ;
Chin, S ;
Wu, PH ;
Rybkin, II ;
Shelton, JM ;
Manieri, M ;
Cinti, S ;
Schoen, FJ ;
Bassel-Duby, R ;
Rosenzweig, A ;
Ingwall, JS ;
Spiegelman, BM .
CELL METABOLISM, 2005, 1 (04) :259-271
[4]   Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production [J].
Arsenijevic, D ;
Onuma, H ;
Pecqueur, C ;
Raimbault, S ;
Manning, BS ;
Miroux, B ;
Couplan, E ;
Alves-Guerra, MC ;
Goubern, M ;
Surwit, R ;
Bouillaud, F ;
Richard, D ;
Collins, S ;
Ricquier, D .
NATURE GENETICS, 2000, 26 (04) :435-439
[5]   Metabolic mechanisms in heart failure [J].
Ashrafian, Houman ;
Frenneaux, Michael P. ;
Opie, Lionel H. .
CIRCULATION, 2007, 116 (04) :434-448
[6]   Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1 [J].
Baar, K ;
Wende, AR ;
Jones, TE ;
Marison, M ;
Nolte, LA ;
Chen, M ;
Kelly, DP ;
Holloszy, JO .
FASEB JOURNAL, 2002, 16 (14) :1879-1886
[7]   Regulation of fasted blood glucose by resistin [J].
Banerjee, RR ;
Rangwala, SM ;
Shapiro, JS ;
Rich, AS ;
Rhoades, B ;
Qi, Y ;
Wang, J ;
Rajala, MW ;
Pocai, A ;
Scherer, PE ;
Steppan, CM ;
Ahima, RS ;
Obici, S ;
Rossetti, L ;
Lazar, MA .
SCIENCE, 2004, 303 (5661) :1195-1198
[8]   Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients [J].
Befroy, Douglas E. ;
Petersen, Kitt Falk ;
Dufour, Sylvie ;
Mason, Graeme F. ;
de Graaf, Robin A. ;
Rothman, Douglas L. ;
Shulman, Gerald I. .
DIABETES, 2007, 56 (05) :1376-1381
[9]   Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis [J].
Bergeron, R ;
Ren, JM ;
Cadman, KS ;
Moore, IK ;
Perret, P ;
Pypaert, M ;
Young, LH ;
Semenkovich, CF ;
Shulman, GI .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2001, 281 (06) :E1340-E1346
[10]   Abrogation of oxidative stress improves insulin sensitivity in the Ren-2 rat model of tissue angiotensin II overexpression [J].
Blendea, MC ;
Jacobs, D ;
Stump, CS ;
McFarlane, SI ;
Ogrin, C ;
Bahtyiar, G ;
Stas, S ;
Kumar, P ;
Sha, Q ;
Ferrario, CM ;
Sowers, JR .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2005, 288 (02) :E353-E359