Mechanisms of adaptive angiogenesis to tissue hypoxia

被引:186
作者
Fong, Guo-Hua [1 ]
机构
[1] Univ Connecticut, Ctr Hlth, Dept Cell Biol, Ctr Vasc Surg, Farmington, CT 06030 USA
关键词
angiogenesis; hypoxia inducible factors; ischemia; HIF-1; alpha; HIF-2; PHD2; prolyl hydroxylases; vascular development;
D O I
10.1007/s10456-008-9107-3
中图分类号
R6 [外科学];
学科分类号
1002 ; 100210 ;
摘要
Angiogenesis is mostly an adaptive response to tissue hypoxia, which occurs under a wide variety of situations ranging from embryonic development to tumor growth. In general, angiogenesis is dependent on the accumulation of hypoxia inducible factors (HIFs), which are heterodimeric transcription factors of a and beta subunits. Under normoxia, HIF heterodimers are not abundantly present due to oxygen dependent hydroxylation, poly-ubiquitination, and proteasomal degradation of a subunits. Under hypoxia, however, alpha subunits are stabilized and form heterodimers with HIF-1 beta which is not subject to oxygen dependent regulation. The accumulation of HIFs under hypoxia allows them to activate the expression of many angiogenic genes and therefore initiates the angiogenic process. In recent years, however, it has become clear that various other mechanisms also participate in fine tuning angiogenesis. In this review, I discuss the relationship between hypoxia and angiogenesis under five topics: (1) regulation of HIF-alpha abundance and activity by oxygen tension and other conditions including oxygen independent mechanisms; (2) hypoxia-regulated expression of angiogenic molecules by HIFs and other transcription factors; (3) responses of vascular cells to hypoxia; (4) angiogenic phenotypes due to altered HIF signaling in mice; and (5) role of the HIF pathway in pathological angiogenesis. Studies discussed under these topics clearly indicate that while mechanisms of oxygen-regulated HIF-alpha stability provide exciting opportunities for the development of angiogenesis or anti-angiogenesis therapies, it is also highly important to consider various other mechanisms for the optimization of these procedures.
引用
收藏
页码:121 / 140
页数:20
相关论文
共 300 条
[1]   SUPPRESSION OF RETINAL NEOVASCULARIZATION IN-VIVO BY INHIBITION OF VASCULAR ENDOTHELIAL GROWTH-FACTOR (VEGF) USING SOLUBLE VEGF-RECEPTOR CHIMERIC PROTEINS [J].
AIELLO, LP ;
PIERCE, EA ;
FOLEY, ED ;
TAKAGI, H ;
CHEN, H ;
RIDDLE, L ;
FERRARA, N ;
KING, GL ;
SMITH, LEH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (23) :10457-10461
[2]   VASCULAR ENDOTHELIAL GROWTH-FACTOR IN OCULAR FLUID OF PATIENTS WITH DIABETIC-RETINOPATHY AND OTHER RETINAL DISORDERS [J].
AIELLO, LP ;
AVERY, RL ;
ARRIGG, PG ;
KEYT, BA ;
JAMPEL, HD ;
SHAH, ST ;
PASQUALE, LR ;
THIEME, H ;
IWAMOTO, MA ;
PARK, JE ;
NGUYEN, HV ;
AIELLO, LM ;
FERRARA, N ;
KING, GL .
NEW ENGLAND JOURNAL OF MEDICINE, 1994, 331 (22) :1480-1487
[3]   G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation [J].
Allende, ML ;
Yamashita, T ;
Proia, RL .
BLOOD, 2003, 102 (10) :3665-3667
[4]   Stabilization of wild-type p53 by hypoxia-inducible factor 1α [J].
An, WG ;
Kanekal, M ;
Simon, MC ;
Maltepe, E ;
Blagosklonny, MV ;
Neckers, LM .
NATURE, 1998, 392 (6674) :405-408
[5]   Sphingosine kinase 1 is up-regulated during hypoxia in U87MG glioma cells [J].
Anelli, Viviana ;
Gault, Christopher R. ;
Cheng, Amy B. ;
Obeid, Lina M. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (06) :3365-3375
[6]   Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor [J].
Appelhoff, RJ ;
Tian, YM ;
Raval, RR ;
Turley, H ;
Harris, AL ;
Pugh, CW ;
Ratcliffe, PJ ;
Gleadle, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (37) :38458-38465
[7]   Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism [J].
Aragones, Julian ;
Schneider, Martin ;
Van Geyte, Katie ;
Fraisl, Peter ;
Dresselaers, Tom ;
Mazzone, Massimiliano ;
Dirkx, Ruud ;
Zacchigna, Serena ;
Lemieux, Helene ;
Jeoung, Nam Ho ;
Lambrechts, Diether ;
Bishop, Tammie ;
Lafuste, Peggy ;
Diez-Juan, Antonio ;
Harten, Sarah K. ;
Van Noten, Pieter ;
De Bock, Katrien ;
Willam, Carsten ;
Tjwa, Marc ;
Grosfeld, Alexandra ;
Navet, Rachel ;
Moons, Lieve ;
Vandendriessche, Thierry ;
Deroose, Christophe ;
Wijeyekoon, Bhathiya ;
Nuyts, Johan ;
Jordan, Benedicte ;
Silasi-Mansat, Robert ;
Lupu, Florea ;
Dewerchin, Mieke ;
Pugh, Chris ;
Salmon, Phil ;
Mortelmans, Luc ;
Gallez, Bernard ;
Gorus, Frans ;
Buyse, Johan ;
Sluse, Francis ;
Harris, Robert A. ;
Gnaiger, Erich ;
Hespel, Peter ;
Van Hecke, Paul ;
Schuit, Frans ;
Van Veldhoven, Paul ;
Ratcliffe, Peter ;
Baes, Myriam ;
Maxwell, Patrick ;
Carmeliet, Peter .
NATURE GENETICS, 2008, 40 (02) :170-180
[8]   An essential role for p300/CBP in the cellular response to hypoxia [J].
Arany, Z ;
Huang, LE ;
Eckner, R ;
Bhattacharya, S ;
Jiang, C ;
Goldberg, MA ;
Bunn, HF ;
Livingston, DM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (23) :12969-12973
[9]   Tumor necrosis factor-alpha is expressed by monocytes/macrophages following cardiac microembolization and is antagonized by cyclosporine [J].
Arras, M ;
Strasser, R ;
Mohri, M ;
Doll, R ;
Eckert, P ;
Schaper, W ;
Schaper, J .
BASIC RESEARCH IN CARDIOLOGY, 1998, 93 (02) :97-107
[10]   Activation of hypoxia-inducible factors in hyperoxia through prolyl 4-hydroxylase blockade in cells and explants of primate lung [J].
Asikainen, TM ;
Schneider, BK ;
Waleh, NS ;
Clyman, RI ;
Ho, WB ;
Flippin, LA ;
Günzler, V ;
White, CW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (29) :10212-10217