Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing Sparse QR Factorization

被引:612
作者
Davis, Timothy A. [1 ]
机构
[1] Univ Florida, Dept Comp & Informat Sci & Engn, Gainesville, FL 32610 USA
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 2011年 / 38卷 / 01期
基金
美国国家科学基金会;
关键词
Algorithms; Experimentation; Performance; QR factorization; least-square problems; sparse matrices; ORTHOGONAL FACTORIZATION; WY REPRESENTATION; ROW; PRODUCTS; FILL;
D O I
10.1145/2049662.2049670
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
SuiteSparseQR is a sparse QR factorization package based on the multifrontal method. Within each frontal matrix, LAPACK and the multithreaded BLAS enable the method to obtain high performance on multicore architectures. Parallelism across different frontal matrices is handled with Intel's Threading Building Blocks library. The symbolic analysis and ordering phase pre-eliminates singletons by permuting the input matrix Ainto the form inverted right perpendicularR(11) R-12; 0 A(22)inverted left perpendicular where R-11 is upper triangular with diagonal entries above a given tolerance. Next, the fill-reducing ordering, column elimination tree, and frontal matrix structures are found without requiring the formation of the pattern of A(T) A. Approximate rank-detection is performed within each frontal matrix using Heath's method. While Heath's method is not always exact, it has the advantage of not requiring column pivoting and thus does not interfere with the fill-reducing ordering. For sufficiently large problems, the resulting sparse QR factorization obtains a substantial fraction of the theoretical peak performance of a multicore computer.
引用
收藏
页数:22
相关论文
共 62 条
[1]   Algorithm 837: AMD, an approximate minimum degree ordering algorithm [J].
Amestoy, PR ;
Enseeiht-Irit ;
Davis, TA ;
Duff, IS .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2004, 30 (03) :381-388
[2]   An approximate minimum degree ordering algorithm [J].
Amestoy, PR ;
Davis, TA ;
Duff, IS .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (04) :886-905
[3]   An unsymmetrized multifrontal LU factorization [J].
Amestoy, PR ;
Puglisi, C .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2002, 24 (02) :553-569
[4]   VECTORIZATION OF A MULTIPROCESSOR MULTIFRONTAL CODE [J].
AMESTOY, PR ;
DUFF, IS .
INTERNATIONAL JOURNAL OF SUPERCOMPUTER APPLICATIONS AND HIGH PERFORMANCE COMPUTING, 1989, 3 (03) :41-59
[5]  
Amestoy PR, 1996, NUMER LINEAR ALGEBR, V3, P275
[6]  
Anderson E., 1999, LAPACK Users Guide, V3rd edn., DOI [10.1137/1.9780898719604, DOI 10.1137/1.9780898719604]
[7]  
[Anonymous], 1998, Matrix algorithms: volume 1: basic decompositions
[8]   THE INFLUENCE OF RELAXED SUPERNODE PARTITIONS ON THE MULTIFRONTAL METHOD [J].
ASHCRAFT, C ;
GRIMES, R .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1989, 15 (04) :291-309
[9]   THE WY REPRESENTATION FOR PRODUCTS OF HOUSEHOLDER MATRICES [J].
BISCHOF, C ;
VANLOAN, C .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (01) :S2-S13
[10]   INCREMENTAL CONDITION ESTIMATION FOR SPARSE MATRICES [J].
BISCHOF, CH ;
LEWIS, JG ;
PIERCE, DJ .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (04) :644-659