A solution to the problem of monotone likelihood in Cox regression

被引:287
作者
Heinze, G [1 ]
Schemper, L [1 ]
机构
[1] Univ Vienna, Dept Med Comp Sci, Sect Clin Biometr, A-1090 Vienna, Austria
关键词
bias reduction; infinite estimates; modified score; penalized likelihood; profile likelihood; proportional hazards model; separation; survival analysis;
D O I
10.1111/j.0006-341X.2001.00114.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The phenomenon of monotone likelihood is observed in the fitting process of a Cox model if the likelihood converges to a finite value while at least one parameter estimate diverges to +/-infinity. Monotone likelihood primarily occurs in small samples with substantial censoring of survival times and several highly predictive covariates. Previous options to deal with monotone likelihood have been unsatisfactory. The solution we suggest is an adaptation of a procedure by Firth (1993, Biometrika 80, 27-38) originally developed to reduce the bias of maximum likelihood estimates. This procedure produces finite parameter estimates by means of penalized maximum likelihood estimation. Corresponding Wald-type tests and confidence intervals are available, but it is shown that penalized likelihood ratio tests and profile penalized likelihood confidence intervals are often preferable. An empirical study of the suggested procedures confirms satisfactory performance of both estimation and inference. The advantage of the procedure over previous options of analysis is finally exemplified in the analysis of a breast cancer study.
引用
收藏
页码:114 / 119
页数:6
相关论文
共 20 条
[1]   THE INCIDENCE OF MONOTONE LIKELIHOOD IN THE COX MODEL [J].
BRYSON, MC ;
JOHNSON, ME .
TECHNOMETRICS, 1981, 23 (04) :381-383
[2]  
Collett D, 2014, MODELLING SURVIVAL D
[3]  
CORDEIRO GM, 1991, J ROY STAT SOC B MET, V53, P629
[4]   On bias reduction in exponential and non-exponential family regression models [J].
Cordeiro, GM ;
Cribari-Neto, F .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1998, 27 (02) :485-500
[5]  
Cox D. R., 1984, ANAL SURVIVAL DATA
[6]  
COX DR, 1972, J R STAT SOC B, V34, P187
[7]   BIAS REDUCTION OF MAXIMUM-LIKELIHOOD-ESTIMATES [J].
FIRTH, D .
BIOMETRIKA, 1993, 80 (01) :27-38
[8]  
Firth D., 1992, COMPUTATION STAT, P553, DOI DOI 10.1007/978-3-662-26811-7_76
[9]  
Firth D., 1992, ADV GLIM STAT MODELL, P91
[10]  
Heinze G., 1999, 10 VIENN U DEP MED C