Dependency-based construction of semantic space models

被引:214
作者
Pado, Sebastian
Lapata, Mirella
机构
[1] Computat Linguist, D-66041 Saarbrucken, Germany
[2] Univ Edinburgh, Sch Informats, Edinburgh EH8 9LW, Midlothian, Scotland
[3] Univ Saarland, D-6600 Saarbrucken, Germany
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1162/coli.2007.33.2.161
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditionally, vector-based semantic space models use word co-occurrence counts from large corpora to represent lexical meaning. In this article we present a novel flamework for constructing semantic spaces that takes syntactic relations into account. We introduce a formalization for this class of models, which allows linguistic knowledge to guide the construction process. We evaluate our framework on a range of tasks relevant for cognitive science and natural language processing: semantic priming, synonymy detection, and word sense disambiguation. In all cases, our framework obtains results that are comparable or superior to the state of the art.
引用
收藏
页码:161 / 199
页数:39
相关论文
共 81 条
  • [1] AGIRRE E, 1996, P 16 INT C COMP LING, P16
  • [2] [Anonymous], 1999, Natural language information retrieval
  • [3] Banerjee S., 2003, P 18 INT JOINT C ART, V3, P805
  • [4] BANNARD C, 2003, P ACL 2003 WORKSH MU, P65
  • [5] BARZILAY R, 2003, THESIS COLUMBIA U NE
  • [6] Using linear algebra for intelligent information retrieval
    Berry, MW
    Dumais, ST
    OBrien, GW
    [J]. SIAM REVIEW, 1995, 37 (04) : 573 - 595
  • [7] BUDANITSKY A, 2001, P WORKSH WORDNET OTH, P29
  • [8] Burnard L., 1995, USERS GUIDE BRIT NAT
  • [9] Choi FYY, 2001, PROCEEDINGS OF THE 2001 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, P109
  • [10] Curran J., 2004, THESIS U EDINBURGH