The structure of isolated Synechococcus strain WH8102 carboxysomes as revealed by electron cryotomography

被引:116
作者
Iancu, Cristina V.
Ding, H. Jane
Morris, Dylan M.
Dias, D. Prabha
Gonzales, Arlene D.
Martino, Anthony
Jensen, Grant J.
机构
[1] CALTECH, Div Biol, Pasadena, CA 91125 USA
[2] Sandia Natl Labs, Biomol Anal & Imaging Dept, Albuquerque, NM 87185 USA
关键词
carboxysomes; electron cryotomography; bacterial ultrastructure; Calvin cycle; CARBONIC-ANHYDRASE; CYANOBACTERIUM; ORGANELLES; PROTEIN; GENES; SHELL; PROKARYOTES; TOMOGRAPHY; MECHANISM; HOMOLOGS;
D O I
10.1016/j.jmb.2007.06.059
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Carboxysomes are organelle-like polyhedral bodies found in cyanobacteria and many chemoautotrophic bacteria that are thought to facilitate carbon fixation. Carboxysomes are bounded by a proteinaceous outer shell and filled with ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the first enzyme in the CO2 fixation pathway, but exactly how they enhance carbon fixation is unclear. Here we report the three-dimensional structure of purified carboxysomes from Synechococcus species strain WH8102 as revealed by electron cryotomography. We found that while the sizes of individual carboxysomes in this organism varied from 114 nm to 137 nm, surprisingly, all were approximately icosahedral. There were on average similar to 250 RuBisCOs per carboxysome, organized into three to four concentric layers. Some models of carboxysome function depend on specific contacts. between individual RuBisCOs and the shell, but no evidence of such contacts was found: no systematic patterns of connecting densities or RuBisCO positions against the shell's presumed hexagonal lattice could be discerned, and simulations showed that packing forces alone could account for the layered organization of RuBisCOs.
引用
收藏
页码:764 / 773
页数:10
相关论文
共 42 条
[1]   The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism [J].
Badger, MR ;
Price, GD ;
Long, BM ;
Woodger, FJ .
JOURNAL OF EXPERIMENTAL BOTANY, 2006, 57 (02) :249-265
[2]   Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria [J].
Badger, MR ;
Hanson, D ;
Price, GD .
FUNCTIONAL PLANT BIOLOGY, 2002, 29 (2-3) :161-173
[3]   CARBONIC-ANHYDRASE ACTIVITY ASSOCIATED WITH THE CYANOBACTERIUM SYNECHOCOCCUS PCC7942 [J].
BADGER, MR ;
PRICE, GD .
PLANT PHYSIOLOGY, 1989, 89 (01) :51-60
[4]   Polyhedral organelles compartmenting bacterial metabolic processes [J].
Bobik, TA .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2006, 70 (05) :517-525
[5]   The propanediol utilization (pdu) operon of Salmonella enterica serovar typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B12-dependent 1,2-propanediol degradation [J].
Bobik, TA ;
Havemann, GD ;
Busch, RJ ;
Williams, DS ;
Aldrich, HC .
JOURNAL OF BACTERIOLOGY, 1999, 181 (19) :5967-5975
[6]   Toward detecting and identifying macromolecules in a cellular context:: Template matching applied to electron tomograms [J].
Böhm, J ;
Frangakis, AS ;
Hegerl, R ;
Nickell, S ;
Typke, D ;
Baumeister, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (26) :14245-14250
[7]   Determination of the fold of the core protein of hepatitis B virus ky electron cryomicroscopy [J].
Bottcher, B ;
Wynne, SA ;
Crowther, RA .
NATURE, 1997, 386 (6620) :88-91
[8]   CHARACTERIZATION OF A HOMOGENOUS PREPARATION OF CARBOXYSOMES FROM THIOBACILLUS-NEAPOLITANUS [J].
CANNON, GC ;
SHIVELY, JM .
ARCHIVES OF MICROBIOLOGY, 1983, 134 (01) :52-59
[9]   Microcompartments in prokaryotes: Carboxysomes and related polyhedra [J].
Cannon, GC ;
Bradburne, CE ;
Aldrich, HC ;
Baker, SH ;
Heinhorst, S ;
Shively, JM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (12) :5351-5361
[10]   PHYSICAL PRINCIPLES IN CONSTRUCTION OF REGULAR VIRUSES [J].
CASPAR, DLD ;
KLUG, A .
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 1962, 27 :1-&