On selection criteria for lattice rules and other quasi-Monte Carlo point sets

被引:21
作者
Lemieux, C [1 ]
L'Ecuyer, P [1 ]
机构
[1] Univ Montreal, Dept Informat & Rech Operat, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Monte Carlo; lattice rules; point sets; quasi-Monte Carlo; selection criteria;
D O I
10.1016/S0378-4754(00)00254-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We define new selection criteria for lattice rules for quasi-Monte Carlo integration. The criteria examine the projections of the lattice over subspaces of small or successive dimensions. Their computation exploits the dimension-stationarity of certain lattice rules, and of other low-discrepancy point sets sharing this property. Numerical results illustrate the usefulness of these new figures of merit. (C) 2001 IMBCS. Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:139 / 148
页数:10
相关论文
共 21 条
[1]  
[Anonymous], SIAM CBMS NSF REG C
[2]  
[Anonymous], 1996, MONTE CARLO CONCEPTS
[3]  
Caflisch R. E., 1997, Journal of Computational Finance, V1, P27
[4]   RANDOMIZATION OF NUMBER THEORETIC METHODS FOR MULTIPLE INTEGRATION [J].
CRANLEY, R ;
PATTERSON, TNL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (06) :904-914
[5]  
ENTACHER K, 1998, LECT NOTES COMPUTATI, P188
[6]  
HELLEKALEK P, 1998, LECT NOTES STAT, V138
[7]  
Hellekalek P., 1998, Random and Quasi-Random Point Sets, P109, DOI [10.1007/978-1-4612-1702-2_3, DOI 10.1007/978-1-4612-1702-2_3]
[8]   Quadrature error bounds with applications to lattice rules [J].
Hickernell, FJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (05) :1995-2016
[9]  
HICKERNELL FJ, 1998, LECT NOTES COMPUTATI, P16
[10]  
JOE S., 1994, LATTICE METHODS MULT