The Habicht approach to subresultants

被引:12
作者
Ho, CJ
Yap, CK
机构
[1] Courant Inst. of Math. Sciences, New York University, New York, NY 10012
基金
美国国家科学基金会;
关键词
D O I
10.1006/jsco.1996.0001
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Habicht approach to the theory of subresultants is based on studying polynomial remainder sequences (PRS) with indeterminate coefficients, and predicting the effects of specializing these coefficients. This has advantages as noted by Loos. We give a complete treatment of this approach by introducing the concept of pseudo-subresultants. (C) 1996 Academic Press Limited
引用
收藏
页码:1 / 14
页数:14
相关论文
共 8 条
[1]  
Brown W. S., 1978, ACM Transactions on Mathematical Software, V4, P237, DOI 10.1145/355791.355795
[2]   EUCLIDS ALGORITHM AND THEORY OF SUBRESULTANTS [J].
BROWN, WS ;
TRAUB, JF .
JOURNAL OF THE ACM, 1971, 18 (04) :505-&
[3]   SUBRESULTANTS AND REDUCED POLYNOMIAL REMAINDER SEQUENCES [J].
COLLINS, GE .
JOURNAL OF THE ACM, 1967, 14 (01) :128-&
[4]   POLYNOMIAL REMAINDER SEQUENCE AND DETERMINANTS [J].
COLLINS, GE .
AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (07) :708-&
[5]  
Habicht Walter., 1948, Commentarii Mathematici Helvetici, V21, P99
[6]  
HO CJ, 1987, 319 NEW YORK U COUR
[7]  
HO CJ, 1989, THESIS NEW YORK U
[8]  
LOOS R, 1983, COMPUTER ALGEBRA