Exergetic performance coefficient analysis of a simple fuel cell system

被引:84
作者
Akkaya, Ali Volkan [1 ]
Sahin, Bahri [2 ]
Erdem, Hasan Huseyin [1 ]
机构
[1] Yildiz Tech Univ, Dept Mech Engn, TR-34349 Istanbul, Turkey
[2] Yildiz Tech Univ, Dept Naval Architecture, TR-34349 Istanbul, Turkey
关键词
fuel cell system; performance analysis; exergetic performance coefficient; operating conditions;
D O I
10.1016/j.ijhydene.2007.03.038
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, a fuel cell power generation system fed by hydrogen is analyzed by different performance criteria over the entire range of potential operating conditions. First law efficiency and net power output are considered for conventional energetic indices of performance, and exergy destruction rate is taken into consideration as an exergetic performance criteria. A new exergetic criterion called the exergetic performance coefficient (EPC) is introduced and is applied to the system model based on zero-dimensional approach. The system model consists of the following components: fuel cell stack, afterburner, fuel and air compressors, and heat exchangers. The effects of the operating conditions on the system performance are studied parametrically. The obtained results based on the exergetic performance coefficient criterion are compared with first law efficiency, power output and exergy destruction rate. Results show that design insights of fuel cell systems can be considerably improved when conventional energetic analyses are supplemented with EPC criterion. (C) 2007 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:4600 / 4609
页数:10
相关论文
共 42 条
[1]   Electrochemical model for performance analysis of a tubular SOFC [J].
Akkaya, Ali Volkan .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2007, 31 (01) :79-98
[2]  
AKKAYA AV, 2005, THESIS YILDIZ TECHN
[3]   Energy analysis of solid-oxide fuel-cell (SOFC) systems [J].
Bedringas, KW ;
Ertesvag, IS ;
Byggstoyl, S ;
Magnussen, BF .
ENERGY, 1997, 22 (04) :403-412
[4]  
Bejan Adrian., 1995, THERMAL DESIGN OPTIM
[5]   A MATHEMATICAL-MODEL OF A SOLID OXIDE FUEL-CELL [J].
BESSETTE, NF ;
WEPFER, WJ ;
WINNICK, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (11) :3792-3800
[6]   SOFC mathernatic model for systems simulations. Part one: from a micro-detailed to macro-black-box model [J].
Bove, R ;
Lunghi, P ;
Sammes, NM .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2005, 30 (02) :181-187
[7]   Modeling solid oxide fuel cell operation: Approaches, techniques and results [J].
Bove, Roberto ;
Ubertini, Stefano .
JOURNAL OF POWER SOURCES, 2006, 159 (01) :543-559
[8]   Simulation and exergy analysis of a hybrid Solid Oxide Fuel Cell (SOFC)-Gas Turbine System [J].
Calise, F. ;
d'Accadia, M. Dentice ;
Palombo, A. ;
Vanoli, L. .
ENERGY, 2006, 31 (15) :3278-3299
[9]   Design and partial load exergy analysis of hybrid SOFC-GT power plant [J].
Calise, F. ;
Palombo, A. ;
Vanoli, L. .
JOURNAL OF POWER SOURCES, 2006, 158 (01) :225-244
[10]   Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry [J].
Campanari, S ;
Iora, P .
JOURNAL OF POWER SOURCES, 2004, 132 (1-2) :113-126