Lithium recycling behaviour of nano-phase-CuCo2O4 as anode for lithium-ion batteries

被引:221
作者
Sharma, Yogesh [1 ]
Sharma, N. [1 ]
Rao, G. V. Subba [1 ]
Chowdari, B. V. R. [1 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
关键词
CuCO2O4; spinel structure; anode material; rate capability; Li-ion batteries;
D O I
10.1016/j.jpowsour.2007.06.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nano-CuCo2O4 is synthesized by the low-temperature (400 degrees C) and cost-effective urea combustion method. X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED) studies establish that the compound possesses a spinel structure and nano-particle morphology (particle size (10-20 nm)). A slight amount of CuO is found as an impurity. Galvanostatic cycling Of CuCo2O4 at 60 mA g(-1) in the voltage range 0.005-3.0 V versus Li metal exhibits reversible cycling performance between 2 and 50 cycles with a small capacity fading of 2 mAh g(-1) per cycle. Good rate capability is also found in the range 0.04-0.94C. Typical discharge and charge capacity values at the 20th cycle are 755(+/- 10) mAh g(-1) (similar to 6.9 mol of Li per mole of CuCo2O4) and 745(+/- 10) mAh g(-1) (similar to 6.8 mol of Li), respectively at a current of 60 mA g(-1). The average discharge and charge potentials are similar to 1.2 and similar to 2.1 V, respectively. The underlying reaction mechanism is the redox reaction: CO <-> CoO <-> Co3O4 and Cu <-> CuO aided by Li2O, after initial reaction with Li. The galvanostatic cycling studies are complemented by cyclic voltammetry (CV), ex situ TEM and SAED. The Li-cycling behaviour of nano-CuCo2O4 compares well with that of iso-structural nano-Co3O4 as reported in the literature. (C) 2007 Published by Elsevier B.V.
引用
收藏
页码:495 / 501
页数:7
相关论文
共 19 条
[1]  
AL C, 2004, J MATER SCI, V39, P1077
[2]   NiCo2O4 spinel:: First report on a transition metal oxide for the negative electrode of sodium-ion batteries [J].
Alcántara, R ;
Jaraba, M ;
Lavela, P ;
Tirado, JL .
CHEMISTRY OF MATERIALS, 2002, 14 (07) :2847-+
[3]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[4]   Metal oxides as negative electrode materials in Li-ion cells [J].
Badway, F ;
Plitz, I ;
Grugeon, S ;
Laruelle, S ;
Dollé, M ;
Gozdz, AS ;
Tarascon, JM .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (06) :A115-A118
[5]   Electrochemical reaction of nanocrystalline Co3O4 thin film with lithium [J].
Fu, ZW ;
Wang, Y ;
Zhang, Y ;
Qin, QZ .
SOLID STATE IONICS, 2004, 170 (1-2) :105-109
[6]   Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery [J].
Gao, XP ;
Bao, JL ;
Pan, GL ;
Zhu, HY ;
Huang, PX ;
Wu, F ;
Song, DY .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (18) :5547-5551
[7]   A study on the charge-discharge mechanism of Co3O4 as an anode for the Li ion secondary battery [J].
Kang, YM ;
Song, MS ;
Kim, JH ;
Kim, HS ;
Park, MS ;
Lee, JY ;
Liu, HK ;
Dou, SX .
ELECTROCHIMICA ACTA, 2005, 50 (18) :3667-3673
[8]   Co3O4 nanomaterials in lithium-ion batteries and gas sensors [J].
Li, WY ;
Xu, LN ;
Chen, J .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (05) :851-857
[9]   Electrochemical performance of Co3O4-C composite anode materials [J].
Needham, S. A. ;
Wang, G. X. ;
Konstantinov, K. ;
Tournayre, Y. ;
Lao, Z. ;
Liu, H. K. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (07) :A315-A319
[10]   Combustion synthesis [J].
Patil, KC ;
Aruna, ST ;
Ekambaram, S .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 1997, 2 (02) :158-165