On a diffuse interface model for a two-phase flow of compressible viscous fluids

被引:103
作者
Abels, Helmut [1 ]
Feireisl, Eduard [2 ]
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] Acad Sci Czech Republ, Math Inst, CR-11567 Prague 1, Czech Republic
关键词
two-phase flow; free boundary value problems; diffuse interface model; mixtures of viscous fluids; Cahn-Hilliard equation; Navier-Stokes equation;
D O I
10.1512/iumj.2008.57.3391
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a model of a binary mixture of compressible, viscous, and macroscopically immiscible fluids based on the diffuse interface approximation, where the difference in concentrations of the two fluids plays the role of the order parameter. The resulting system consists of the compressible Navier-Stokes equations governing the motion of the mixture coupled with the Cahn-Hilliard equation for the order parameter. We prove existence of global-in-time weak (distributional) solutions of the problem without any restriction on the size of initial data.
引用
收藏
页码:659 / 698
页数:40
相关论文
共 22 条
[1]  
ABELS H, 2007, 15 MPI MIS
[2]  
Adams R., 1975, Sobolev Spaces
[3]   Diffuse-interface methods in fluid mechanics [J].
Anderson, DM ;
McFadden, GB ;
Wheeler, AA .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :139-165
[4]   A generalization of the Navier-Stokes equations to two-phase flows [J].
Blesgen, T .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1999, 32 (10) :1119-1123
[5]  
Bogovskii M E., 1980, Theory of Cubature Formulas and the Application of Functional Analysis to Problems of Mathematical Physics, P5
[6]  
Boyer F, 1999, ASYMPTOTIC ANAL, V20, P175
[7]  
Deimling K., 2010, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[8]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[9]  
DUNN JE, 1985, ARCH RATION MECH AN, V88, P95
[10]  
Feireisl E, 2004, INDIANA U MATH J, V53, P1705