Soil CO2 efflux and its spatial variation in a Florida slash pine plantation

被引:268
作者
Fang, C [1 ]
Moncrieff, JB
Gholz, HL
Clark, KL
机构
[1] Univ Edinburgh, Inst Ecol & Resource Management, Edinburgh EH9 3JU, Midlothian, Scotland
[2] Univ Florida, Inst Food & Agr Sci, Forest Resources & Conservat, Gainesville, FL 32611 USA
关键词
multiple regression model; slash pine plantation; soil respiration; spatial variability of CO2 efflux;
D O I
10.1023/A:1004304309827
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The efflux of CO2 from the soil surface can vary markedly in magnitude both in time and space and its correct determination is crucial in many ecological studies. In this paper, we report results of field measurements, using an open-top dynamic chamber, of soil CO2 efflux in a mature Florida slash pine (Pinus elliottii Engelm. var.elliottii) plantation. The daily average efflux was 0.217 mg CO2 m(-2)s(-1) in the autumn and 0.087 mg CO2 m(-2)s(-1) in the winter. Soil temperature, which accounts for most of the temporal variability in CO2 efflux, is by far the most influential factor controlling soil respiration rate and its temporal variation. The CO2 efflux in the slash pine plantation is highly spatially variable and effluxes from the soil under palmetto is significantly higher than that from the open floor. The CO2 efflux generally increases with increase in soil fine root biomass, litter and humus amount on the forest floor but is inversely related to the amount of organic matter in the mineral soil. The spatial variation in CO2 efflux can be well characterised by a simple multiple regression model incorporating live and dead biomass and soil total porosity as predictor variables. Understorey plants, mostly Serenoa repens, are an important component of the C cycle and the major contributor to the spatial heterogeneity of soil CO2 efflux. The influence of understorey plants on soil respiration is probably via two approaches: increasing litterfall and root metabolism, both consequently stimulating microbial activity in the mineral soil.
引用
收藏
页码:135 / 146
页数:12
相关论文
共 35 条
[1]  
[Anonymous], 1992, SOIL BIOL BIOCH
[2]   ROOT CONTRIBUTION TO TOTAL SOIL METABOLISM IN A TROPICAL FOREST SOIL FROM ORISSA, INDIA [J].
BEHERA, N ;
JOSHI, SK ;
PATI, DP .
FOREST ECOLOGY AND MANAGEMENT, 1990, 36 (2-4) :125-134
[3]  
CAMPBELL GS, 1985, SOIL PHYSICS BASIC T
[4]   ABIOTIC CONTROLS OF SOIL RESPIRATION BENEATH AN 18-YEAR-OLD PINUS-RADIATA STAND IN SOUTHEASTERN AUSTRALIA [J].
CARLYLE, JC ;
THAN, UB .
JOURNAL OF ECOLOGY, 1988, 76 (03) :654-662
[5]   EFFECTS OF NITROGEN-FERTILIZATION ON THE FLUXES OF N2O, CH4, AND CO2 FROM SOILS IN A FLORIDA SLASH PINE PLANTATION [J].
CASTRO, MS ;
PETERJOHN, WT ;
MELILLO, JM ;
STEUDLER, PA ;
GHOLZ, HL ;
LEWIS, D .
CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE, 1994, 24 (01) :9-13
[7]   SEASONAL PATTERNS OF METHANE UPTAKE AND CARBON DIOXIDE RELEASE BY A TEMPERATE WOODLAND SOIL [J].
Crill, Patrick M. .
GLOBAL BIOGEOCHEMICAL CYCLES, 1991, 5 (04) :319-334
[8]  
CROPPER WP, 1985, PEDOBIOLOGIA, V28, P35
[9]   MICROMETEOROLOGICAL AND CHAMBER MEASUREMENTS OF CO2 FLUX FROM BARE SOIL [J].
DUGAS, WA .
AGRICULTURAL AND FOREST METEOROLOGY, 1993, 67 (1-2) :115-128
[10]   SOIL CO2 EVOLUTION IN FLORIDA SLASH PINE PLANTATIONS .1. CHANGES THROUGH TIME [J].
EWEL, KC ;
CROPPER, WP ;
GHOLZ, HL .
CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE, 1987, 17 (04) :325-329