The C-terminal extension of Saccharomyces cerevisiae Hsp104 plays a role in oligomer assembly

被引:42
作者
Mackay, Ryder G. [1 ]
Helsen, Christopher W. [1 ]
Tkach, Johnny M. [1 ]
Glover, John R. [1 ]
机构
[1] Univ Toronto, Dept Biochem, Toronto, ON M5S 1A8, Canada
关键词
D O I
10.1021/bi701714s
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Saccharomyces cerevisiae protein Hsp104, a member of the Hsp100/C1p AAA+ family of ATPases, and its orthologues in plants (Hsp101) and bacteria (C1pB) function to disaggregate and refold thermally denatured proteins following heat shock and play important roles in thermotolerance. The primary sequences of fungal Hsp104's contain a largely acidic C-terminal extension not present in bacterial C1pB's. In this work, deletion mutants were used to determine the role this extension plays in Hsp104 structure and function. Elimination of the C-terminal tetrapeptide DDLD diminishes binding of the tetratricopeptide repeat domain cochaperone Cpr7 but is dispensable for Hsp104-mediated thermotolerance. The acidic region of the extension is also dispensable for thermotolerance and for the stimulation of Hsp104 ATPase activity by poly-L-lysine, but its truncation results in an oligomerization defect and reduced ATPase activity in vitro. Finally, sequence alignments reveal that the C-terminal extension contains a sequence (VLPNH) that is conserved in fungal Hsp104's but not in other orthologues. Hsp104 lacking the entire C-terminal extension including the VLPNH region does not assemble and has very low ATPase activity. In the presence of a molecular crowding agent the ATPase activities of mutants with longer truncations are partially restored possibly through enhanced oligomer formation. However, elimination of the whole C-terminal extension results in an Hsp104 molecule which is unable to assemble and becomes aggregation prone at high temperature, highlighting a novel structural role for this region.
引用
收藏
页码:1918 / 1927
页数:10
相关论文
共 47 条
[1]   Hsp104 interacts with Hsp90 cochaperones in respiring yeast [J].
Abbas-Terki, T ;
Donzé, O ;
Briand, PA ;
Picard, D .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (22) :7569-7575
[2]   Ligand discrimination by TPR domains -: Relevance and selectivity of EEVD-recognition in Hsp70•Hop•Hsp90 complexes [J].
Brinker, A ;
Scheufler, C ;
von der Mülbe, F ;
Fleckenstein, B ;
Herrmann, C ;
Jung, G ;
Moarefi, I ;
Hartl, FU .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (22) :19265-19275
[3]   Defining a pathway of communication from the C-terminal peptide binding domain to the N-terminal ATPase domain in a AAA protein [J].
Cashikar, AG ;
Schirmer, EC ;
Hattendorf, DA ;
Glover, R ;
Ramakrishnan, MS ;
Ware, DM ;
Lindquist, SL .
MOLECULAR CELL, 2002, 9 (04) :751-760
[4]  
Chen SY, 1998, CELL STRESS CHAPERON, V3, P118, DOI 10.1379/1466-1268(1998)003<0118:DIOPAT>2.3.CO
[5]  
2
[6]  
Chernoff YO, 1999, MOL CELL BIOL, V19, P8103
[7]   ROLE OF THE CHAPERONE PROTEIN HSP104 IN PROPAGATION OF THE YEAST PRION-LIKE FACTOR [PSI(+)] [J].
CHERNOFF, YO ;
LINDQUIST, SL ;
ONO, B ;
INGEVECHTOMOV, SG ;
LIEBMAN, SW .
SCIENCE, 1995, 268 (5212) :880-884
[8]  
Creighton T.E., 1997, Protein Structure: A Practical Approach
[9]  
Derkatch IL, 1997, GENETICS, V147, P507
[10]   The peptidyl-prolyl isomerase domain of the CyP-40 cyclophilin homolog Cpr7 is not required to support growth or glucocorticoid receptor activity in Saccharomyces cerevisiae [J].
Duina, AA ;
Marsh, JA ;
Kurtz, RB ;
Chang, HCJ ;
Lindquist, S ;
Gaber, RF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (18) :10819-10822