Fractional calculus as a macroscopic manifestation of randomness

被引:64
作者
Grigolini, P
Rocco, A
West, BJ
机构
[1] Univ N Texas, Ctr Nonlinear Sci, Denton, TX 76203 USA
[2] Univ Pisa, Dipartimento Fis, I-56100 Pisa, Italy
[3] CNR, Ist Biofis, I-56127 Pisa, Italy
来源
PHYSICAL REVIEW E | 1999年 / 59卷 / 03期
关键词
D O I
10.1103/PhysRevE.59.2603
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We generalize the method of Van Hove [Physica (Amsterdam) 21, 517 (1955)] so as to deal with the case of nonordinary statistical mechanics, that being phenomena with no time-scale separation. We show that in the case of ordinary statistical mechanics, even if the adoption of the Van Hove method imposes randomness upon Hamiltonian dynamics, the resulting statistical process is described using normal calculus techniques. On the other hand, in the case where there is no time-scale separation, this generalized version of Van Hove's method not only imposes randomness upon the microscopic dynamics, but it also transmits randomness to the macroscopic level. As a result, the correct description of macroscopic dynamics has to be expressed in terms of the fractional calculus. [S1063-651X(99)11802-6].
引用
收藏
页码:2603 / 2613
页数:11
相关论文
共 37 条
[1]   Dynamical approach to Levy processes [J].
Allegrini, P ;
Grigolini, P ;
West, BJ .
PHYSICAL REVIEW E, 1996, 54 (05) :4760-4767
[2]  
BUIATTI M, CONDMAT9809108
[3]   Statistical mechanics -: Brownian motion and microscopic chaos [J].
Dürr, D ;
Spohn, H .
NATURE, 1998, 394 (6696) :831-+
[4]   LEVY FLIGHTS IN RANDOM-ENVIRONMENTS [J].
FOGEDBY, HC .
PHYSICAL REVIEW LETTERS, 1994, 73 (19) :2517-2520
[5]   DECAY THEORY OF UNSTABLE QUANTUM SYSTEMS [J].
FONDA, L ;
GHIRARDI, GC ;
RIMINI, A .
REPORTS ON PROGRESS IN PHYSICS, 1978, 41 (04) :587-631
[6]   GENERALIZED LANGEVIN EQUATION WITH GAUSSIAN FLUCTUATIONS [J].
FOX, RF .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (12) :2331-2335
[7]   CHAOTIC DIFFUSION AND 1/F-NOISE OF PARTICLES IN TWO-DIMENSIONAL SOLIDS [J].
GEISEL, T ;
ZACHERL, A ;
RADONS, G .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1988, 71 (01) :117-127
[8]   ANOMALOUS DIFFUSION IN INTERMITTENT CHAOTIC SYSTEMS [J].
GEISEL, T ;
THOMAE, S .
PHYSICAL REVIEW LETTERS, 1984, 52 (22) :1936-1939
[9]   FRACTIONAL RELAXATION AND THE TIME-TEMPERATURE SUPERPOSITION PRINCIPLE [J].
GLOCKLE, WG ;
NONNENMACHER, TF .
RHEOLOGICA ACTA, 1994, 33 (04) :337-343
[10]  
GLOCKLE WG, 1991, MACROMOLECULES, V24, P6426