Retention of latent centromeres in the mammalian genome

被引:40
作者
Ferreri, GC
Liscinsky, DM
Mack, JA
Eldridge, MDB
O'Neill, RJ [1 ]
机构
[1] Univ Connecticut, Dept Mol & Cell Biol, U2131, Storrs, CT 06269 USA
[2] Macquarie Univ, Dept Biol Sci, N Ryde, NSW 2109, Australia
关键词
D O I
10.1093/jhered/esi029
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The centromere is a cytologically defined entity that possesses a conserved and restricted function in the cell: it is the site of kinetochore assembly and spindle attachment. Despite its conserved function, the centromere is a highlymutable portion of the chromosome, carrying little sequence conservation across taxa. This divergence has made studying the movement of a centromere, either within a single karyotype or between species, a challenging endeavor. Several hypotheses have been proposed to explain the permutability of centromere location within a chromosome. This permutability is termed "centromere repositioning'' when described in an evolutionary context and "neocentromerization'' when abnormalities within an individual karyotype are considered. Both are characterized by a shift in location of the functional centromere within a chromosome without a concomitant change in linear gene order. Evolutionary studies across lineages clearly indicate that centromere repositioning is not a rare eventin karyotypic evolution and must be considered when examining the evolution of chromosome structure and syntenic order. This paper examines the theories proposed to explain centromere repositioning in mammals. These theories are interpreted in light of evidence gained in human studies and in our presented datafrom the marsupial model species Macropus eugenii, the tammar wallaby.
引用
收藏
页码:217 / 224
页数:8
相关论文
共 59 条
[1]   Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres [J].
Alonso, A ;
Mahmood, R ;
Li, SL ;
Cheung, F ;
Yoda, K ;
Warburton, PE .
HUMAN MOLECULAR GENETICS, 2003, 12 (20) :2711-2721
[2]   Human centromere repositioning "in progress" [J].
Amor, DJ ;
Bentley, K ;
Ryan, J ;
Perry, J ;
Wong, L ;
Slater, H ;
Choo, KHA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (17) :6542-6547
[3]   Neocentromeres: Role in human disease, evolution, and centromere study [J].
Amor, DJ ;
Choo, KHA .
AMERICAN JOURNAL OF HUMAN GENETICS, 2002, 71 (04) :695-714
[4]   Nuclear gene sequences provide evidence for the monophyly of australidelphian marsupials [J].
Amrine-Madsen, H ;
Scally, M ;
Westerman, M ;
Stanhope, MJ ;
Krajewski, C ;
Springer, MS .
MOLECULAR PHYLOGENETICS AND EVOLUTION, 2003, 28 (02) :186-196
[5]   Enrichment of segmental duplications in regions of breaks of synteny between the human and mouse genomes suggest their involvement in evolutionary rearrangements [J].
Armengol, L ;
Pujana, MA ;
Cheung, J ;
Scherer, SW ;
Estivill, X .
HUMAN MOLECULAR GENETICS, 2003, 12 (17) :2201-2208
[6]   Hotspots of mammalian chromosomal evolution [J].
Bailey, JA ;
Baertsch, R ;
Kent, WJ ;
Haussler, D ;
Eichler, EE .
GENOME BIOLOGY, 2004, 5 (04)
[7]   An Alu transposition model for the origin and expansion of human segmental duplications [J].
Bailey, JA ;
Liu, G ;
Eichler, EE .
AMERICAN JOURNAL OF HUMAN GENETICS, 2003, 73 (04) :823-834
[8]   Recent segmental duplications in the human genome [J].
Bailey, JA ;
Gu, ZP ;
Clark, RA ;
Reinert, K ;
Samonte, RV ;
Schwartz, S ;
Adams, MD ;
Myers, EW ;
Li, PW ;
Eichler, EE .
SCIENCE, 2002, 297 (5583) :1003-1007
[9]   Segmental duplications: Organization and impact within the current Human Genome Project assembly [J].
Bailey, JA ;
Yavor, AM ;
Massa, HF ;
Trask, BJ ;
Eichler, EE .
GENOME RESEARCH, 2001, 11 (06) :1005-1017
[10]   An ordered comparative map of the cattle and human genomes [J].
Band, MR ;
Larson, JH ;
Rebeiz, M ;
Green, CA ;
Heyen, DW ;
Donovan, J ;
Windish, R ;
Steining, C ;
Mahyuddin, P ;
Womack, JE ;
Lewin, HA .
GENOME RESEARCH, 2000, 10 (09) :1359-1368