Rapid bidirectional switching of synaptic NMDA receptors

被引:279
作者
Bellone, Camilla
Nicoll, Roger A. [1 ]
机构
[1] Univ Calif San Francisco, Dept Mol & Cellular Pharmacol, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Cellular & Mol Physiol, San Francisco, CA 94143 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1016/j.neuron.2007.07.035
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Synaptic NMDA-type glutamate receptors (NMDARs) play important roles in synaptic plasticity, brain development, and pathology. In the last few years, the view of NMDARs as relatively fixed components of the postsynaptic density has changed. A number of studies have now shown that both the number of receptors and their subunit compositions can be altered. During development, the synaptic NMDARs subunit composition changes, switching from predominance of NR2B-containing to NR2A-containing receptors, but little is known about the mechanisms involved in this developmental process. Here, we report that, depending on the pattern of NMDAR activation, the subunit composition of synaptic NMDARs is under extremely rapid, bidirectional control at neonatal synapses. This switching, which is at least as rapid as that seen with AMPARs, will have immediate and dramatic consequences on the integrative capacity of the synapse.
引用
收藏
页码:779 / 785
页数:7
相关论文
共 43 条
[1]   Rapid and reversible effects of activity on acetylcholine receptor density at the neuromuscular junction in vivo [J].
Akaaboune, M ;
Culican, SM ;
Turney, SG ;
Lichtman, JW .
SCIENCE, 1999, 286 (5439) :503-507
[2]   NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII [J].
Barria, A ;
Malinow, R .
NEURON, 2005, 48 (02) :289-301
[3]   NMDAR EPSC kinetics do not regulate the critical period for LTP at thalamocortical synapses [J].
Barth, AL ;
Malenka, RC .
NATURE NEUROSCIENCE, 2001, 4 (03) :235-236
[4]   Differential roles of NR2A and NR2B-containing NMDA receptors in LTP and LTD in the CA1 region of two-week old rat hippocampus [J].
Bartlett, Thomas E. ;
Bannister, Neil J. ;
Collett, Valerie J. ;
Dargan, Sheila L. ;
Massey, Peter V. ;
Bortolotto, Zuner A. ;
Fitzjohn, Stephen M. ;
Bashir, Zafar I. ;
Collingridge, Graham L. ;
Lodge, David .
NEUROPHARMACOLOGY, 2007, 52 (01) :60-70
[5]   Lack of NMDA receptor subtype selectivity for hippocampal long-term potentiation [J].
Berberich, S ;
Punnakkal, P ;
Jensen, V ;
Pawlak, V ;
Seeburg, PH ;
Hvalby, O ;
Köhr, G .
JOURNAL OF NEUROSCIENCE, 2005, 25 (29) :6907-6910
[6]   POSTSYNAPTIC INDUCTION AND PRESYNAPTIC EXPRESSION OF HIPPOCAMPAL LONG-TERM DEPRESSION [J].
BOLSHAKOV, VY ;
SIEGELBAUM, SA .
SCIENCE, 1994, 264 (5162) :1148-1152
[7]   ACTIVITY-DEPENDENT DECREASE IN NMDA RECEPTOR RESPONSES DURING DEVELOPMENT OF THE VISUAL-CORTEX [J].
CARMIGNOTO, G ;
VICINI, S .
SCIENCE, 1992, 258 (5084) :1007-1011
[8]   NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity [J].
Carroll, RC ;
Zukin, RS .
TRENDS IN NEUROSCIENCES, 2002, 25 (11) :571-577
[9]   Changes in synaptic structure underlie the developmental speeding of AMPA receptor-mediated EPSCs [J].
Cathala, L ;
Holderith, NB ;
Nusser, Z ;
DiGregorio, DA ;
Cull-Candy, SG .
NATURE NEUROSCIENCE, 2005, 8 (10) :1310-1318
[10]   Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse [J].
Chavis, P ;
Westbrook, G .
NATURE, 2001, 411 (6835) :317-321