The Emperor Seamounts: Southward motion of the Hawaiian hotspot plume in earth's mantle

被引:279
作者
Tarduno, JA
Duncan, RA
Scholl, DW
Cottrell, RD
Steinberger, B
Thordarson, T
Kerr, BC
Neal, CR
Frey, FA
Torii, M
Carvallo, C
机构
[1] Univ Rochester, Dept Earth & Environm Sci, Rochester, NY 14627 USA
[2] Oregon State Univ, Coll Ocean & Atmospher Sci, Corvallis, OR 97331 USA
[3] Stanford Univ, Dept Geophys, Stanford, CA 94305 USA
[4] Japan Marine Sci & Technol Ctr, Inst Frontier Res Earth Evolut, Yokosuka, Kanagawa 2370061, Japan
[5] Univ Hawaii, Sch Ocean & Earth Sci & Technol, Dept Geol & Geophys, Honolulu, HI 96822 USA
[6] Univ Notre Dame, Dept Civil Engn & Geol Sci, Notre Dame, IN 46556 USA
[7] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
[8] Okayama Univ Sci, Dept Biosphere Geosphere Syst Sci, Okayama 7000005, Japan
[9] Univ Toronto, Dept Phys, Div Geophys, Mississauga, ON L5L 1C6, Canada
关键词
D O I
10.1126/science.1086442
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Hawaiian-Emperor hotspot track has a prominent bend, which has served as the basis for the theory that the Hawaiian hotspot, fixed in the deep mantle, traced a change in plate motion. However, paleomagnetic and radiometric age data from samples recovered by ocean drilling de. ne an age-progressive paleolatitude history, indicating that the Emperor Sea-mount trend was principally formed by the rapid motion (over 40 millimeters per year) of the Hawaiian hotspot plume during Late Cretaceous to early-Tertiary times (81 to 47 million years ago). Evidence for motion of the Hawaiian plume affects models of mantle convection and plate tectonics, changing our understanding of terrestrial dynamics.
引用
收藏
页码:1064 / 1069
页数:6
相关论文
共 39 条
[1]  
Atwater T., 1989, The Geology of North America, Volume N: the Eastern Pacific Ocean and Hawaii, VN, P21, DOI [DOI 10.1130/DNAG-GNA-N.21, 10.1130/DNAG-GNA-N.21]
[2]   A comparison of tomographic and geodynamic mantle models [J].
Becker, TW ;
Boschi, L .
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2002, 3 :1-48
[3]  
Berggren W.A., 1995, GEOCHRONOLOGY TIME S, V54, P129
[4]   Apparent and true polar wander and the geometry of the geomagnetic field over the last 200 Myr [J].
Besse, J ;
Courtillot, V .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2002, 107 (B11)
[5]   Mesozoic plate-motion history below the northeast Pacific Ocean from seismic images of the subducted Farallon slab [J].
Bunge, HP ;
Grand, SP .
NATURE, 2000, 405 (6784) :337-340
[6]   A Late Cretaceous pole for the Pacific plate: implications for apparent and true polar wander and the drift of hotspots [J].
Cottrell, RD ;
Tarduno, JA .
TECTONOPHYSICS, 2003, 362 (1-4) :321-333
[7]   LATITUDE DEPENDENCE OF ANGULAR DISPERSION OF GEOMAGNETIC FIELD [J].
COX, A .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1970, 20 (03) :253-&
[8]  
DALRYMPLE GB, 1980, INITIAL REPORTS DEEP, V55, P659
[9]   How to anchor hotspots in a convecting mantle? [J].
Davaille, A ;
Girard, F ;
Le Bars, M .
EARTH AND PLANETARY SCIENCE LETTERS, 2002, 203 (02) :621-634
[10]   Are the Pacific and Indo-Atlantic hotspots fixed? Testing the plate circuit through Antarctica [J].
DiVenere, V ;
Kent, DV .
EARTH AND PLANETARY SCIENCE LETTERS, 1999, 170 (1-2) :105-117