A continuous time random walk approach to the stream transport of solutes

被引:110
作者
Boano, F.
Packman, A. I.
Cortis, A.
Revelli, R.
Ridolfi, L.
机构
[1] Politecn Torino, Dept Hydraul Transports & Civil Infrastruct, I-10129 Turin, Italy
[2] Northwestern Univ, Dept Civil & Environm Engn, Evanston, IL 60208 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA
关键词
D O I
10.1029/2007WR006062
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The transport of solutes in rivers is influenced by the exchange of water between the river and the underlying hyporheic zone. The residence times of solutes in the hyporheic zone are typically much longer than traveltimes in the stream, resulting in a significant delay in the downstream propagation of solutes. A new model for this process is proposed here on the basis of the continuous time random walk (CTRW) approach. The CTRW is a generalization of the classic random walk that can include arbitrary distributions of waiting times, and it is particularly suited to deal with the long residence times arising from hyporheic exchange. Inclusion of suitable hyporheic residence time distributions in the CTRW leads to a generalized advection-dispersion equation for instream concentration breakthrough curves that includes the effects of specific hyporheic exchange processes. Here examples are presented for advective hyporheic exchange resulting from regular and irregular series of bedforms. A second major advantage of the CTRW approach is that the combined effects of different processes affecting overall downstream transport can be incorporated in the model by convolving separate waiting time distributions for each relevant process. The utility of this approach is illustrated by analyzing the effects of local-scale sediment heterogeneity on bedform-induced hyporheic exchange. The ability to handle arbitrarily wide residence time distributions and the ability to assess the combined effects of multiple transport processes makes the CTRW model framework very useful for the study of solute transport problems in rivers. The model presented here can be easily extended to represent different types of surface-subsurface exchange processes and the transport of both conservative and nonconservative substances in rivers.
引用
收藏
页数:12
相关论文
共 47 条
[1]  
[Anonymous], 1964, Handbook of mathematical functions
[2]   SIMULATION OF SOLUTE TRANSPORT IN A MOUNTAIN POOL-AND-RIFFLE STREAM - A TRANSIENT STORAGE MODEL [J].
BENCALA, KE ;
WALTERS, RA .
WATER RESOURCES RESEARCH, 1983, 19 (03) :718-724
[3]   Modeling non-Fickian transport in geological formations as a continuous time random walk [J].
Berkowitz, Brian ;
Cortis, Andrea ;
Dentz, Marco ;
Scher, Harvey .
REVIEWS OF GEOPHYSICS, 2006, 44 (02)
[4]   Bedform-induced hyporheic exchange with unsteady flows [J].
Boano, Fulvio ;
Revelli, Roberto ;
Ridolfi, Luca .
ADVANCES IN WATER RESOURCES, 2007, 30 (01) :148-156
[5]   The functional significance of the hyporheic zone in streams and rivers [J].
Boulton, AJ ;
Findlay, S ;
Marmonier, P ;
Stanley, EH ;
Valett, HM .
ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS, 1998, 29 :59-81
[6]  
Broshears R.E., 1993, 924081 US GEOL SURV
[7]   The ecological significance of exchange processes between rivers and groundwater [J].
Brunke, M ;
Gonser, T .
FRESHWATER BIOLOGY, 1997, 37 (01) :1-33
[8]   Potential contribution of topography-driven regional groundwater flow to fractal stream chemistry: Residence time distribution analysis of Toth flow [J].
Cardenas, M. Bayani .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (05)
[9]   SURFACE-SUBSURFACE WATER INTERACTIONS IN AN ALLUVIATED MOUNTAIN STREAM CHANNEL [J].
CASTRO, NM ;
HORNBERGER, GM .
WATER RESOURCES RESEARCH, 1991, 27 (07) :1613-1621
[10]   Computing "Anomalous" contaminant transport in porous media: The CTRW MATLAB toolbox [J].
Cortis, A ;
Berkowitz, B .
GROUND WATER, 2005, 43 (06) :947-950