Selection of causal gene sets for lymphoma prognostication from expression profiling and construction of prognostic fuzzy neural network models

被引:13
作者
Ando, T
Suguro, M
Kobayashi, T
Seto, M
Honda, H [1 ]
机构
[1] Nagoya Univ, Sch Engn, Dept Biotechnol, Chikusa Ku, Nagoya, Aichi 4648603, Japan
[2] Aichi Canc Ctr, Res Inst, Div Mol Med, Chikusa Ku, Nagoya, Aichi 4648681, Japan
关键词
prognostification; lymphoma; fuzzy neural network; expression profile; modeling;
D O I
10.1016/S1389-1723(03)90119-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
To assess the response of lymphomas to chemotherapy, gene expression profiling data from DNA microarrays were analyzed using the fuzzy neural network (FNN) modeling method. We used the FNN modeling method to produce 10 noninferior models. Using these models, we were able to predict diffuse large B-cell lymphoma (DLBCL) patient outcome with 93% accuracy. Of the 37 genes in the 10 models, 13 genes were repeatedly selected, indicating that these genes are important for prognostication. On Kaplan-Meier plots of overall survival, patients predicted by the FNN model to be cured survived significantly longer than those predicted to be refractory (P<0.0001), indicating that the FNN could successfully identify patients with a relatively poor prognosis among low-clinical-risk patients. The FNN modeling method presented here is able to precisely extract significant biological markers affecting prognosis.
引用
收藏
页码:161 / 167
页数:7
相关论文
共 20 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]   Fuzzy neural network applied to gene expression profiling for predicting the prognosis of diffuse large B-cell lymphoma [J].
Ando, T ;
Suguro, M ;
Hanai, T ;
Kobayashi, T ;
Honda, H ;
Seto, M .
JAPANESE JOURNAL OF CANCER RESEARCH, 2002, 93 (11) :1207-1212
[3]   New approach to classifying non-hodgkin's lymphomas: Clinical features of the major histologic subtypes [J].
Armitage, JO ;
Weisenburger, DD .
JOURNAL OF CLINICAL ONCOLOGY, 1998, 16 (08) :2780-2795
[4]   Knowledge-based analysis of microarray gene expression data by using support vector machines [J].
Brown, MPS ;
Grundy, WN ;
Lin, D ;
Cristianini, N ;
Sugnet, CW ;
Furey, TS ;
Ares, M ;
Haussler, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) :262-267
[5]   Cluster analysis and display of genome-wide expression patterns [J].
Eisen, MB ;
Spellman, PT ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14863-14868
[6]  
Engelhard M, 1997, BLOOD, V89, P2291
[7]   COMPARISON OF A STANDARD REGIMEN (CHOP) WITH 3 INTENSIVE CHEMOTHERAPY REGIMENS FOR ADVANCED NON-HODGKINS-LYMPHOMA [J].
FISHER, RI ;
GAYNOR, ER ;
DAHLBERG, S ;
OKEN, MM ;
GROGAN, TM ;
MIZE, EM ;
GLICK, JH ;
COLTMAN, CA ;
MILLER, TP .
NEW ENGLAND JOURNAL OF MEDICINE, 1993, 328 (14) :1002-1006
[8]   TUTORIAL ON THE SWEEP OPERATOR [J].
GOODNIGHT, JH .
AMERICAN STATISTICIAN, 1979, 33 (03) :149-158
[9]  
Gruvberger S, 2001, CANCER RES, V61, P5979
[10]  
Hanai T., 1999, Japanese Journal of Medical Electronics and Biological Engineering, V37, P178