A new class of improved convex underestimators for twice continuously differentiable constrained NLPs

被引:53
作者
Akrotirianakis, IG [1 ]
Floudas, CA [1 ]
机构
[1] Princeton Univ, Dept Chem Engn, Princeton, NJ 08540 USA
基金
美国国家科学基金会;
关键词
alpha BB; convex underestimators; global optimization;
D O I
10.1007/s10898-004-6455-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present a new class of convex underestimators for arbitrarily nonconvex and twice continuously differentiable functions. The underestimators are derived by augmenting the original nonconvex function by a nonlinear relaxation function. The relaxation function is a separable convex function, that involves the sum of univariate parametric exponential functions. An efficient procedure that finds the appropriate values for those parameters is developed. This procedure uses interval arithmetic extensively in order to verify whether the new underestimator is convex. For arbitrarily nonconvex functions it is shown that these convex underestimators are tighter than those generated by the alphaBB method. Computational studies complemented with geometrical interpretations demonstrate the potential benefits of the proposed improved convex underestimators.
引用
收藏
页码:367 / 390
页数:24
相关论文
共 27 条
[1]   A global optimization method, αBB, for general twice-differentiable constrained NLPs -: I.: Theoretical advances [J].
Adjiman, CS ;
Dallwig, S ;
Floudas, CA ;
Neumaier, A .
COMPUTERS & CHEMICAL ENGINEERING, 1998, 22 (09) :1137-1158
[2]   A global optimization method, αBB, for general twice-differentiable constrained NLPs -: II.: Implementation and computational results [J].
Adjiman, CS ;
Androulakis, IP ;
Floudas, CA .
COMPUTERS & CHEMICAL ENGINEERING, 1998, 22 (09) :1159-1179
[3]  
AKROTIRIANAKIS IG, 2004, UNPUB J GLOBAL OPTIM
[4]  
ALKHAYYAL FH, 1983, MATH OPER RES, V8, P523
[5]  
Boggs P.T., 2008, ACTA NUMER, V4, P1, DOI DOI 10.1017/S0962492900002518
[6]  
DIXON LCW, 1975, P WORKSH U CALG
[7]  
Floudas C.A, 2000, NONCON OPTIM ITS APP, DOI 10.1007/978-1-4757-4949-6
[8]  
FLOUDAS CA, 1999, HDB TEST PROBLEMS LO
[9]  
GOLDBERG DE, 1987, GENETIC ALGORITHMS
[10]   ON DESCENT FROM LOCAL MINIMA [J].
GOLDSTEIN AA ;
PRICE, JF .
MATHEMATICS OF COMPUTATION, 1971, 25 (115) :569-574