A tutorial on v-support vector machines

被引:322
作者
Chen, PH
Lin, CJ
Schölkopf, B
机构
[1] Max Planck Inst Biol Cybernet, Tubingen, Germany
[2] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei 106, Taiwan
关键词
v-support vector machines; support vector regression; support vector implementation; statistical learning theory; positive definite kernels;
D O I
10.1002/asmb.537
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We briefly describe the main ideas of statistical learning theory, support vector machines (SVMs), and kernel feature spaces. We place particular emphasis on a description of the so-called v-SVM, including details of the algorithm and its implementation, theoretical results, and practical applications. Copyright (c) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:111 / 136
页数:26
相关论文
共 41 条
  • [1] AIZERMAN MA, 1965, AUTOMAT REM CONTR+, V25, P821
  • [2] Scale-sensitive dimensions, uniform convergence, and learnability
    Alon, N
    BenDavid, S
    CesaBianchi, N
    Haussler, D
    [J]. JOURNAL OF THE ACM, 1997, 44 (04) : 615 - 631
  • [3] [Anonymous], 1994, MACHINE LEARNING NEU
  • [4] Avriel M., 2003, NONLINEAR PROGRAMMIN
  • [5] Bartlett P, 1999, ADVANCES IN KERNEL METHODS, P43
  • [6] Bazaraa M. S., 2013, NONLINEAR PROGRAMMIN
  • [7] BERGMAN R, 2002, HPL2002236 HP LAB
  • [8] Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
  • [9] Bredensteiner E.J., 2000, ICML, P57
  • [10] Burges CJC, 1997, ADV NEUR IN, V9, P375