Vector greedy algorithms

被引:20
作者
Lutoborski, A [1 ]
Temlyakov, VN
机构
[1] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[2] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
关键词
D O I
10.1016/S0885-064X(03)00026-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Our objective is to study nonlinear approximation with regard to redundant systems. Redundancy on the one hand offers much promise for greater efficiency in terms of approximation rate, but on the other hand gives rise to highly nontrivial theoretical and practical problems. Greedy-type approximations proved to be convenient and efficient ways of constructing m-term approximants. We introduce and study vector greedy algorithms that are designed with aim of constructing mth greedy approximants simultaneously for a given finite number of elements. We prove convergence theorems and obtain some estimates for the rate of convergence of vector greedy algorithms when elements come from certain classes. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:458 / 473
页数:16
相关论文
共 26 条
[1]   UNIVERSAL APPROXIMATION BOUNDS FOR SUPERPOSITIONS OF A SIGMOIDAL FUNCTION [J].
BARRON, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) :930-945
[2]   Adaptive greedy approximations [J].
Davis, G ;
Mallat, S ;
Avellaneda, M .
CONSTRUCTIVE APPROXIMATION, 1997, 13 (01) :57-98
[3]  
DeVore R. A., 1998, Acta Numerica, V7, P51, DOI 10.1017/S0962492900002816
[4]   COMPRESSION OF WAVELET DECOMPOSITIONS [J].
DEVORE, RA ;
JAWERTH, B ;
POPOV, V .
AMERICAN JOURNAL OF MATHEMATICS, 1992, 114 (04) :737-785
[5]   Nonlinear approximation in finite-dimensional spaces [J].
DeVore, RA ;
Temlyakov, VN .
JOURNAL OF COMPLEXITY, 1997, 13 (04) :489-508
[6]   Some remarks on greedy algorithms [J].
DeVore, RA ;
Temlyakov, VN .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (2-3) :173-187
[7]  
DeVore RA., 1995, J FOURIER ANAL APPL, V2, P29, DOI [DOI 10.1007/S00041-001-4021-8, 10.1007/s00041-001-4021-8]
[8]  
Donahue MJ, 1997, CONSTR APPROX, V13, P187
[9]  
Donoho D. L., 1993, Applied and Computational Harmonic Analysis, V1, P100, DOI 10.1006/acha.1993.1008
[10]   Cart and best-ortho-basis: A connection [J].
Donoho, DL .
ANNALS OF STATISTICS, 1997, 25 (05) :1870-1911