A family of Discontinuous Galerkin finite elements for the Reissner-Mindlin plate

被引:67
作者
Arnold, DN [1 ]
Brezzi, F
Marini, LD
机构
[1] Univ Minnesota, Inst Math & Applicat, Minneapolis, MN 55455 USA
[2] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
[3] CNR, IMATI, I-27100 Pavia, Italy
基金
美国国家科学基金会;
关键词
Discontinuous Galerkin; Reissner-Mindlin plates; locking-free finite elements;
D O I
10.1007/s10915-004-4134-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a family of locking-free elements for the Reissner-Mindlin plate using Discontinuous Galerkin (DG) techniques, one for each odd degree, and prove optimal error estimates. A second family uses conforming elements for the rotations and nonconforming elements for the transverse displacement, generalizing the element of Arnold and Falk to higher degree.
引用
收藏
页码:25 / 45
页数:21
相关论文
共 26 条
[1]  
Agmon S., 1965, Van Nostrand Mathematical Studies
[2]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[3]   A UNIFORMLY ACCURATE FINITE-ELEMENT METHOD FOR THE REISSNER-MINDLIN PLATE [J].
ARNOLD, DN ;
FALK, RS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (06) :1276-1290
[4]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[5]  
Arnold DN, 2000, LECT NOTES COMP SCI, V11, P89
[6]   Partial selective reduced integration schemes and kinematically linked interpolations for plate bending problems [J].
Auricchio, F ;
Lovadina, C .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (05) :693-722
[7]   A SHEAR-DEFORMABLE PLATE ELEMENT WITH AN EXACT THIN LIMIT [J].
AURICCHIO, F ;
TAYLOR, RL .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 118 (3-4) :393-412
[8]  
AURICCHIO F, 2001, COMPUT METH APPL MEC, V190, P18
[9]  
Brenner SC, 2004, MATH COMPUT, V73, P1067
[10]   Poincare-Friedrichs inequalities for piecewise H1 functions [J].
Brenner, SC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (01) :306-324