The crystal structure of dienoyl-CoA isomerase at 1.5 Å resolution reveals the importance of aspartate and glutamate sidechains for catalysis

被引:81
作者
Modis, Y
Filppula, SA
Novikov, DK
Norledge, B
Hiltunen, JK
Wierenga, RK [1 ]
机构
[1] Univ Oulu, Dept Biochem, Bioctr, FIN-90570 Oulu, Finland
[2] European Mol Biol Lab, D-69012 Heidelberg, Germany
[3] Univ Oulu, Lab Struct Biol Chem, FIN-90570 Oulu, Finland
基金
芬兰科学院;
关键词
beta-oxidation; import; isomerase; mitochondria; peroxisome;
D O I
10.1016/S0969-2126(98)00098-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: The degradation of unsaturated fatty acids is vital to all living organisms. Certain unsaturated fatty acids must be catabolized via a pathway auxiliary to the main beta-oxidation pathway. Dienoyl-coenzyme A (dienoyl-CoA) isomerase catalyzes one step of this auxiliary pathway, the isomerization of 3-trans,5-cis-dienoyl-CoA to 2-trans,4-trans-dienoyl-CoA, and is imported into both mitochondria and peroxisomes. Dienoyl-CoA isomerase belongs to a family of CoA-binding proteins that share the enoyl-CoA hydratase/isomerase sequence motif. Results: The crystal structure of rat dienoyl-CoA isomerase has been determined at 1.5 Angstrom resolution. The fold closely resembles that of enoyl-CoA hydratase and 4-chlorobenzoyl-CoA dehalogenase. Dienoyl-CoA isomerase forms hexamers made up of two trimers. The structure contains a well ordered peroxisomal targeting signal type-1 which is mostly buried in the inter-trimer space. The active-site pocket is deeply buried and entirely hydrophobic, with the exception of the acidic residues Asp176, Glu196 and Asp204. Site-directed mutagenesis of Asp204 revealed that this residue is essential for catalysis. In a molecular modeling simulation, a molecule of 3-trans,5-cis-octadienoyl-CoA was docked into the active site. Conclusions: The structural data, supported by the mutagenesis data, suggest a reaction mechanism where Glu196 acts as a proton acceptor and Asp204 acts as a proton donor. Asp176 is paired with Glu196 and is important for optimizing the catalytic proton transfer properties of Glu196. In the predicted mode of substrate binding, an oxyanion hole stabilizes the transition state by binding the thioester oxygen. The presence of a buried peroxisomal targeting signal suggests that dienoyl-CoA isomerase is prevented from reaching its hexameric structure in the cytosol.
引用
收藏
页码:957 / 970
页数:14
相关论文
共 55 条
[1]   BIASED PROBABILITY MONTE-CARLO CONFORMATIONAL SEARCHES AND ELECTROSTATIC CALCULATIONS FOR PEPTIDES AND PROTEINS [J].
ABAGYAN, R ;
TOTROV, M .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 235 (03) :983-1002
[2]  
Allen F.H., 1993, CHEM AUTOMAT NEWS, V8, P31
[3]  
ALLEN FH, 1993, CHEM DESIGN AUTOMATI, V8, P1
[4]   Characterization of the hydroxymethylglutaryl-CoA lyase precursor, a protein targeted to peroxisomes and mitochondria [J].
Ashmarina, LI ;
Robert, MF ;
Elsliger, MA ;
Mitchell, GA .
BIOCHEMICAL JOURNAL, 1996, 315 :71-75
[5]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[6]   Structure of 4-chlorobenzoyl coenzyme A dehalogenase determined to 1.8 angstrom resolution: An enzyme catalyst generated via adaptive mutation [J].
Benning, MM ;
Taylor, KL ;
Liu, RQ ;
Yang, G ;
Xiang, H ;
Wesenberg, G ;
DunawayMariano, D ;
Holden, HM .
BIOCHEMISTRY, 1996, 35 (25) :8103-8109
[7]   PURIFICATION AND MECHANISM OF DELTA(3),DELTA(5)-T-2,T-4-DIENOYL-COA ISOMERASE FROM RAT-LIVER [J].
CHEN, LS ;
JIN, SJ ;
TSERNG, KY .
BIOCHEMISTRY, 1994, 33 (34) :10527-10534
[8]   THE MOLECULAR-SURFACE PACKAGE [J].
CONNOLLY, ML .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 1993, 11 (02) :139-143
[9]   Phase combination and cross validation in iterated density-modification calculations [J].
Cowtan, KD ;
Main, P .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1996, 52 :43-48
[10]   Unified nomenclature for peroxisome biogenesis factors [J].
Distel, B ;
Erdmann, R ;
Gould, SJ ;
Blobel, G ;
Crane, DI ;
Cregg, JM ;
Dodt, G ;
Fujiki, Y ;
Goodman, JM ;
Just, WW ;
Kiel, JAKW ;
Kunau, WH ;
Lazarow, PB ;
Mannaerts, GP ;
Moser, HW ;
Osumi, T ;
Rachubinski, RA ;
Roscher, A ;
Subramani, S ;
Tabak, HF ;
Tsukamoto, T ;
Valle, D ;
vanderKlei, I ;
vanVeldhoven, PP ;
Veenhuis, M .
JOURNAL OF CELL BIOLOGY, 1996, 135 (01) :1-3