Adaptive finite element techniques for the acoustic wave equation

被引:40
作者
Bangerth, W [1 ]
Rannacher, R [1 ]
机构
[1] Univ Heidelberg, Inst Appl Math, D-69120 Heidelberg, Germany
关键词
D O I
10.1142/S0218396X01000668
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We present an adaptive finite element method for solving the acoustic wave equation. Using a global duality argument and Galerkin orthogonality, we derive an identity for the error with respect to an arbitrary functional output of the solution. The error identity is evaluated by solving the dual problem numerically. The resulting local cell-wise error indicators are used in the grid adaptation process. In this way, the space-time mesh can be tailored for the efficient computation of the quantity of interest. We give an overview of the implementation of the proposed method and illustrate its performance by several numerical examples.
引用
收藏
页码:575 / 591
页数:17
相关论文
共 15 条
[1]  
Bangerth W., 1999, E W J NUMER MATH, V7, P263
[2]  
BANGERTH W, 9943 IWR
[3]  
BANGERTH W, 1998, THESIS U HEIDELBERG
[5]  
BECKER R, 1996, J NUMER MATH, V4, P237
[6]  
BECKER R, 1998, GRID GENERATION ADAP, V113
[7]  
BECKER R, 1998, P ENUMATH 95 P ENUMA
[8]  
ERIKSSON K, 1988, MATH COMPUT, V50, P361, DOI 10.1090/S0025-5718-1988-0929542-X
[9]  
FREID I, 1979, COMPUT METHODS APPL, V20, P317
[10]   A continuous space-time finite element method for the wave equation [J].
French, DA ;
Peterson, TE .
MATHEMATICS OF COMPUTATION, 1996, 65 (214) :491-506