Efficient empirical Bayes variable selection and estimation in linear models

被引:108
作者
Yuan, M [1 ]
Lin, Y
机构
[1] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[2] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
hierarchical model; LARS algorithm; LASSO; model selection; penalized least squares;
D O I
10.1198/016214505000000367
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose an empirical Bayes method for variable selection and coefficient estimation in linear regression models. The method is based on a particular hierarchical Bayes formulation, and the empirical Bayes estimator is shown to be closely related to the LASSO estimator. Such a connection allows us to take advantage of the recently developed quick LASSO algorithm to compute the empirical Bayes estimate, and provides a new way to select the tuning parameter in the LASSO method. Unlike previous empirical Bayes variable selection methods, which in most practical situations can be implemented only through a greedy stepwise algorithm, our method gives a global solution efficiently. Simulations and real examples show that the proposed method is very competitive in terms of variable selection, estimation accuracy, and computation speed compared with other variable selection and estimation methods.
引用
收藏
页码:1215 / 1225
页数:11
相关论文
共 18 条
[1]  
ANDREWS DF, 1974, J ROY STAT SOC B MET, V36, P99
[3]  
BREIMAN L, 1985, J AM STAT ASSOC, V80, P580, DOI 10.2307/2288473
[4]   BETTER SUBSET REGRESSION USING THE NONNEGATIVE GARROTE [J].
BREIMAN, L .
TECHNOMETRICS, 1995, 37 (04) :373-384
[5]   Bayes model averaging with selection of regressors [J].
Brown, PJ ;
Vannucci, M ;
Fearn, T .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2002, 64 :519-536
[6]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[7]  
CHIPMAN H, 2001, IMS LECT NOTES MONOG, V38, P65, DOI DOI 10.1214/LNMS/1215540964
[8]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[9]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[10]   THE RISK INFLATION CRITERION FOR MULTIPLE-REGRESSION [J].
FOSTER, DP ;
GEORGE, EI .
ANNALS OF STATISTICS, 1994, 22 (04) :1947-1975