Dry matter accumulation and distribution in five cultivars of maize (Zea mays):: relationships and procedures for use in crop modelling

被引:19
作者
Birch, CJ [1 ]
Hammer, GL
Rickert, KG
机构
[1] Univ Queensland, Gatton Coll, St Lucia, Qld 4345, Australia
[2] Queensland Dept Primary Ind, CSIRO, Agr Prod Syst Res Unit, Toowoomba, Qld 4350, Australia
来源
AUSTRALIAN JOURNAL OF AGRICULTURAL RESEARCH | 1999年 / 50卷 / 04期
关键词
components of yield; harvest index; yield;
D O I
10.1071/A98113
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
The ability to predict accurately dry matter (DM) accumulation, partitioning, and thus final grain yield is crucial in crop simulation models. The objectives of the study were to measure radiation interception and radiation use efficiency, to quantify the distribution of DM among the various plant parts, and to develop improved methods of modelling DM accumulation and partitioning among plant parts. Five cultivars of maize differing widely in maturity and adaptation were planted in October 1993 in southeastern Queensland, and grown under non-limiting conditions of water and plant nutrient supplies. Data on DM accumulation, light interception, and canopy development were collected. The light extinction coefficient (k) did not differ among the cultivars. Radiation use efficiency was constant in each cultivar until close to physiological maturity, when a small decline was observed. Partitioning of DM between leaves and stems (until 90% of leaf tips had appeared) was described by a linear relationship between the proportion of DM allocated to leaves and the number of leaves present. Ear growth was described by a thermal-time-dependent equation from 150 degree-days (base temperature 8 degrees C) before silking to 115 degree-days after silking. Predictions of accumulation of grain yield by either components of yield (grain number per plant and individual grain weight) or daily increase in harvest index were assessed, but neither was entirely satisfactory, the former because of inaccurate prediction of grain number per plant, and the latter because of differences among cultivars in the daily increase in harvest index and terminal harvest index. Thus, the use of genotype-specific coefficients remains necessary. Throughout crop life, DM in stems can be predicted by difference, once DM is allocated to other plant parts. The relationships presented where leaf number mediates DM partitioning before silking simplify modelling of DM accumulation and partitioning in maize.
引用
收藏
页码:513 / 527
页数:15
相关论文
共 67 条
[1]   THE EFFECT OF CHANGES OF ASSIMILATE SUPPLY AROUND FLOWERING ON GRAIN SINK SIZE AND YIELD OF MAIZE (ZEA-MAYS-L) CULTIVARS OF TROPICAL AND TEMPERATE ADAPTATION [J].
ALUKO, GK ;
FISCHER, KS .
AUSTRALIAN JOURNAL OF AGRICULTURAL RESEARCH, 1988, 39 (02) :153-161
[2]   ANALYSIS OF GROWTH AND YIELD OF MAIZE, SUNFLOWER AND SOYBEAN GROWN AT BALCARCE, ARGENTINA [J].
ANDRADE, FH .
FIELD CROPS RESEARCH, 1995, 41 (01) :1-12
[3]   TEMPERATURE AFFECTS RADIATION USE EFFICIENCY IN MAIZE [J].
ANDRADE, FH ;
UHART, SA ;
CIRILO, A .
FIELD CROPS RESEARCH, 1993, 32 (1-2) :17-25
[4]   RADIATION USE EFFICIENCY OF MAIZE GROWN IN A COOL AREA [J].
ANDRADE, FH ;
UHART, SA ;
ARGUISSAIN, GG ;
RUIZ, RA .
FIELD CROPS RESEARCH, 1992, 28 (04) :345-354
[5]  
Bange MP, 1995, THESIS U QUEENSLAND
[6]  
Birch C. J., 1989, TESTING CERES MAIZE
[7]   Testing the performance of two maize simulation models with a range of cultivars of maize (Zea mays) in diverse environments [J].
Birch, CJ .
ENVIRONMENTAL SOFTWARE, 1996, 11 (1-3) :91-98
[8]   Improved methods for predicting individual leaf area and leaf senescence in maize (Zea mays) [J].
Birch, CJ ;
Hammer, GL ;
Rickert, KG .
AUSTRALIAN JOURNAL OF AGRICULTURAL RESEARCH, 1998, 49 (02) :249-262
[9]   Temperature and photoperiod sensitivity of development in five cultivars of maize (Zea mays L.) from emergence to tassel initiation [J].
Birch, CJ ;
Hammer, GL ;
Rickert, KG .
FIELD CROPS RESEARCH, 1998, 55 (1-2) :93-107
[10]  
BIRCH CJ, 1996, THESIS U QUEENSLAND