Predicting species distributions from checklist data using site-occupancy models

被引:182
作者
Kery, Marc [1 ]
Gardner, Beth [2 ]
Monnerat, Christian [3 ]
机构
[1] Swiss Ornithol Inst, CH-6204 Sempach, Switzerland
[2] US Geol Survey, Patuxent Wildlife Res Ctr, Laurel, MD 20708 USA
[3] CSCF, CH-2000 Neuchatel, Switzerland
关键词
Aeshna cyanea; checklists; citizen science; detection probability; dragonfly; generalized linear model; hierarchical model; Odonata; species distribution model; Switzerland; IMPERFECT DETECTION; STATISTICAL-MODELS; POPULATION-CHANGE; MULTIPLE STATES; DYNAMICS; PROBABILITY; EXTINCTION; DIVERSITY; ABUNDANCE; RICHNESS;
D O I
10.1111/j.1365-2699.2010.02345.x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Aim (1) To increase awareness of the challenges induced by imperfect detection, which is a fundamental issue in species distribution modelling; (2) to emphasize the value of replicate observations for species distribution modelling; and (3) to show how 'cheap' checklist data in faunal/floral databases may be used for the rigorous modelling of distributions by site-occupancy models. Location Switzerland. Methods We used checklist data collected by volunteers during 1999 and 2000 to analyse the distribution of the blue hawker, Aeshna cyanea (Odonata, Aeshnidae), a common dragonfly in Switzerland. We used data from repeated visits to 1-ha pixels to derive 'detection histories' and apply site-occupancy models to estimate the 'true' species distribution, i.e. corrected for imperfect detection. We modelled blue hawker distribution as a function of elevation and year and its detection probability of elevation, year and season. Results The best model contained cubic polynomial elevation effects for distribution and quadratic effects of elevation and season for detectability. We compared the site-occupancy model with a conventional distribution model based on a generalized linear model, which assumes perfect detectability (p = 1). The conventional distribution map looked very different from the distribution map obtained using site-occupancy models that accounted for the imperfect detection. The conventional model underestimated the species distribution by 60%, and the slope parameters of the occurrence-elevation relationship were also underestimated when assuming p = 1. Elevation was not only an important predictor of blue hawker occurrence, but also of the detection probability, with a bell-shaped relationship. Furthermore, detectability increased over the season. The average detection probability was estimated at only 0.19 per survey. Main conclusions Conventional species distribution models do not model species distributions per se but rather the apparent distribution, i.e. an unknown proportion of species distributions. That unknown proportion is equivalent to detectability. Imperfect detection in conventional species distribution models yields underestimates of the extent of distributions and covariate effects that are biased towards zero. In addition, patterns in detectability will erroneously be ascribed to species distributions. In contrast, site-occupancy models applied to replicated detection/non-detection data offer a powerful framework for making inferences about species distributions corrected for imperfect detection. The use of 'cheap' checklist data greatly enhances the scope of applications of this useful class of models.
引用
收藏
页码:1851 / 1862
页数:12
相关论文
共 73 条
[1]   Climate and the range dynamics of species with imperfect detection [J].
Altwegg, Res ;
Wheeler, Marius ;
Erni, Birgit .
BIOLOGY LETTERS, 2008, 4 (05) :581-584
[2]   Five (or so) challenges for species distribution modelling [J].
Araujo, Miguel B. ;
Guisan, Antoine .
JOURNAL OF BIOGEOGRAPHY, 2006, 33 (10) :1677-1688
[3]  
Bailey LL, 2007, ECOL APPL, V17, P281, DOI 10.1890/1051-0761(2007)017[0281:SDTIOS]2.0.CO
[4]  
2
[5]   Relating populations to habitats using resource selection functions [J].
Boyce, MS ;
McDonald, LL .
TRENDS IN ECOLOGY & EVOLUTION, 1999, 14 (07) :268-272
[6]   Statistical modeling: The two cultures [J].
Breiman, L .
STATISTICAL SCIENCE, 2001, 16 (03) :199-215
[7]  
Brown WS, 2007, COPEIA, P656
[8]   Factors affecting detection probability in plant distribution studies [J].
Chen, Guoke ;
Kery, Marc ;
Zhang, Jinlong ;
Ma, Keping .
JOURNAL OF ECOLOGY, 2009, 97 (06) :1383-1389
[9]  
Dijkstra K.D. W., 2006, Field guide to the dragonflies and damselflies of Britain and Europe
[10]  
Dorazio RM, 2006, ECOLOGY, V87, P842, DOI 10.1890/0012-9658(2006)87[842:ESRAAB]2.0.CO