Maximal margin classification for metric spaces

被引:7
作者
Hein, M [1 ]
Bousquet, O [1 ]
机构
[1] Max Planck Inst Biol Cybernet, D-72076 Tubingen, Germany
来源
LEARNING THEORY AND KERNEL MACHINES | 2003年 / 2777卷
关键词
D O I
10.1007/978-3-540-45167-9_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article we construct a maximal margin classification algorithm for arbitrary metric spaces. At first we show that the Support Vector Machine (SVM) is a maximal margin algorithm for the class of metric spaces where the negative squared distance is conditionally positive definite (CPD). This means that the metric space can be isometrically embedded into a Hilbert space, where one performs linear maximal margin separation. We will show that the solution only depends on the metric, but not on the kernel. Following the framework we develop for the SVM, we construct an algorithm for maximal margin classification in arbitrary metric spaces. The main difference compared with SVM is that we no longer embed isometrically into a Hilbert space, but a Banach space. We further give an estimate of the capacity of the function class involved in this algorithm via Rademacher averages. We recover an algorithm of Graepel et al. [6].
引用
收藏
页码:72 / 86
页数:15
相关论文
共 12 条
[1]  
[Anonymous], 1998, Encyclopedia of Biostatistics
[2]  
BARTLETT PL, 2002, RADEMACHER GAUSSIAN, V3, P463
[3]  
Berg C., 1984, HARMONIC ANAL SEMIGR
[4]  
Bredensteiner E.J., 2000, ICML, P57
[5]  
Cucker F, 2002, B AM MATH SOC, V39, P1
[6]   UNIVERSAL DONSKER CLASSES AND METRIC ENTROPY [J].
DUDLEY, RM .
ANNALS OF PROBABILITY, 1987, 15 (04) :1306-1326
[7]  
Graepel T, 1999, IEE CONF PUBL, P304, DOI 10.1049/cp:19991126
[8]   A generalized kernel approach to dissimilarity-based classification [J].
Pekalska, E ;
Paclík, P ;
Duin, RPW .
JOURNAL OF MACHINE LEARNING RESEARCH, 2002, 2 (02) :175-211
[9]  
Rudin W., 1991, FUNCTIONAL ANAL
[10]   Metric spaces and positive definite functions [J].
Schoenberg, I. J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1938, 44 (1-3) :522-536