Elliptic eigenvalue problems with eigenparameter dependent boundary conditions

被引:24
作者
Binding, P [1 ]
Hryniv, R
Langer, H
Najman, B
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[2] Inst Appl Problems Mech & Math, UA-290601 Lvov, Ukraine
[3] Vienna Tech Univ, Inst Anal, A-1040 Vienna, Austria
[4] Univ Zagreb, Dept Math, Zagreb 41000, Croatia
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1006/jdeq.2000.3945
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a uniformly elliptic second order linear operator on a smooth bounded domain Omega subset of R-n. We study the eigenvalue problem Au = lambdau subject to boundary conditions B(0)u = lambdaB(1)u on partial derivative Omega, where B-j are linear boundary operators. The problem is recast in the form Au=lambdau in a Hilbert or Krein space, and results are given on the location and type of the spectrum, full- and half-range completeness, and regularity of critical points. (C) 2001 Academic Press.
引用
收藏
页码:30 / 54
页数:25
相关论文
共 20 条
[2]  
Agmon S., 1965, Van Nostrand Mathematical Studies
[3]  
Azizov T. Ya., 1989, LINEAR OPERATORS SPA
[4]   INDEFINITE STURM-LIOUVILLE PROBLEMS AND HALF-RANGE COMPLETENESS [J].
BEALS, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 56 (03) :391-407
[5]   Relative boundedness and relative compactness for linear operators in Banach spaces [J].
Binding, P ;
Hryniv, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (08) :2287-2290
[6]  
Binding P, 1995, OPER THEOR, V80, P79
[7]  
Bognar J., 1974, INDEFINITE INNER PRO
[8]  
CURGUS B, 1989, J DIFFER EQUATIONS, V79, P31
[9]  
Dijksma A., 1996, FIELDS I MONOGR, P73
[10]   SPECTRAL THEORY FOR OPERATORS GENERATED BY ELLIPTIC BOUNDARY PROBLEMS WITH EIGENVALUE PARAMETER IN BOUNDARY CONDITIONS 1 [J].
ERCOLANO, J ;
SCHECHTER, M .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1965, 18 (1-2) :83-+