Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models

被引:134
作者
Binder, Harald [1 ,2 ]
Schumacher, Martin [2 ]
机构
[1] Univ Freiburg, Freiburg Ctr Data Anal & Modeling, D-79104 Freiburg, Germany
[2] Univ Med Ctr Freiburg, Inst Med Biometry & Med Informat, D-79104 Freiburg, Germany
关键词
D O I
10.1186/1471-2105-9-14
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: When predictive survival models are built from high-dimensional data, there are often additional covariates, such as clinical scores, that by all means have to be included into the final model. While there are several techniques for the fitting of sparse high-dimensional survival models by penalized parameter estimation, none allows for explicit consideration of such mandatory covariates. Results: We introduce a new boosting algorithm for censored time-to-event data that shares the favorable properties of existing approaches, i.e., it results in sparse models with good prediction performance, but uses an offset-based update mechanism. The latter allows for tailored penalization of the covariates under consideration. Specifically, unpenalized mandatory covariates can be introduced. Microarray survival data from patients with diffuse large B-cell lymphoma, in combination with the recent, bootstrap-based prediction error curve technique, is used to illustrate the advantages of the new procedure. Conclusion: It is demonstrated that it can be highly beneficial in terms of prediction performance to use an estimation procedure that incorporates mandatory covariates into high-dimensional survival models. The new approach also allows to answer the question whether improved predictions are obtained by including microarray features in addition to classical clinical criteria.
引用
收藏
页数:10
相关论文
共 25 条
[1]  
[Anonymous], 2007, BMC Bioinform
[2]  
BUHLMANN P, 2008, IN PRESS STAT SCI
[3]   Boosting for high-dimensional linear models [J].
Buhlmann, Peter .
ANNALS OF STATISTICS, 2006, 34 (02) :559-583
[4]   Predicting patient survival from microarray data by accelerated failure time modeling using partial least squares and LASSO [J].
Datta, Susmita ;
Le-Rademacher, Jennifer ;
Datta, Somnath .
BIOMETRICS, 2007, 63 (01) :259-271
[5]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[6]   Additive logistic regression: A statistical view of boosting - Rejoinder [J].
Friedman, J ;
Hastie, T ;
Tibshirani, R .
ANNALS OF STATISTICS, 2000, 28 (02) :400-407
[7]   Efron-type measures of prediction error for survival analysis [J].
Gerds, Thomas A. ;
Schumacher, Martin .
BIOMETRICS, 2007, 63 (04) :1283-1287
[8]   Consistent estimation of the expected brier score in general survival models with right-censored event times [J].
Gerds, Thomas A. ;
Schumacher, Martin .
BIOMETRICAL JOURNAL, 2006, 48 (06) :1029-1040
[9]   Forward stagewise regression and the monotone lasso [J].
Hastie, Trevor ;
Taylor, Jonathan ;
Tibshirani, Robert ;
Walther, Guenther .
ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 :1-29
[10]  
HOTHORN T, 2007, MBOOST MODEL BASED B