Prediction of Structure and Properties of Boron-Based Covalent Organic Frameworks by a First-Principles Derived Force Field

被引:52
作者
Amirjalayer, Saeed [1 ]
Snurr, Randall Q. [2 ]
Schmid, Rochus [1 ]
机构
[1] Ruhr Univ Bochum, Lehrstuhl Anorgan Chem Organometall & Mat Chem 2, D-44780 Bochum, Germany
[2] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA
关键词
NEGATIVE THERMAL-EXPANSION; HYDROGEN STORAGE; MOLECULAR-MECHANICS; AB-INITIO; RETICULAR CHEMISTRY; CARBON-DIOXIDE; BASIS-SETS; ADSORPTION; DYNAMICS; METHANE;
D O I
10.1021/jp211280m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a method to theoretically predict structures in arbitrary network topologies for all currently known boron based covalent organic frameworks (COFs). This is particularly useful because these materials are accessible experimentally only as polycrystalline powders. The method is based on a new fully flexible molecular mechanics force field. The consistent parameter set is derived by a genetic algorithm optimization approach from first-principles reference computed data. To achieve high accuracy, the convergence with respect to the level of theory is carefully controlled for this reference. The force field is used to investigate the relative stability of the two high symmetry topologies ctn and bor. Interestingly, for all systems, the ctn topology is found to be energetically more stable. This preference is observed experimentally, too, with the single exception of COF-108, which forms the bor topology. This exception can thus be attributed to the different synthesis conditions, demonstrating that other topologies might be accessible in principle for all COFs. The force field is further used to compute first benchmark surface areas for ideal systems, thermal expansion coefficients, elastic constants, and CO2 adsorption isotherms for all systems in both topologies, which are experimentally unavailable. Our force field opens the way for theoretical structure prediction and prescreening of properties for these fascinating materials.
引用
收藏
页码:4921 / 4929
页数:9
相关论文
共 77 条
[1]   MOLECULAR MECHANICS - THE MM3 FORCE-FIELD FOR HYDROCARBONS .1. [J].
ALLINGER, NL ;
YUH, YH ;
LII, JH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (23) :8551-8566
[2]   MOLECULAR MECHANICS (MM3) CALCULATIONS ON CONJUGATED HYDROCARBONS [J].
ALLINGER, NL ;
LI, FB ;
YAN, LQ ;
TAI, JC .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1990, 11 (07) :868-895
[3]   Exploring Network Topologies of Copper Paddle Wheel Based Metal-Organic Frameworks with a First-Principles Derived Force Field [J].
Amirjalayer, Saeed ;
Tafipolsky, Maxim ;
Schmid, Rochus .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (31) :15133-15139
[4]   Mechanical properties of cubic zinc carboxylate IRMOF-1 metal-organic framework crystals [J].
Bahr, D. F. ;
Reid, J. A. ;
Mook, W. M. ;
Bauer, C. A. ;
Stumpf, R. ;
Skulan, A. J. ;
Moody, N. R. ;
Simmons, B. A. ;
Shindel, M. M. ;
Allendorf, M. D. .
PHYSICAL REVIEW B, 2007, 76 (18)
[5]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[6]   ATOMIC CHARGES DERIVED FROM SEMIEMPIRICAL METHODS [J].
BESLER, BH ;
MERZ, KM ;
KOLLMAN, PA .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1990, 11 (04) :431-439
[7]   Lithium-Doped 3D Covalent Organic Frameworks: High-Capacity Hydrogen Storage Materials [J].
Cao, Dapeng ;
Lan, Jianhui ;
Wang, Wenchuan ;
Smit, Berend .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (26) :4730-4733
[8]   Phase selection and discovery among five assembly modes in a coordination polymerization [J].
Caskey, Stephen R. ;
Wong-Foy, Antek G. ;
Matzger, Adam J. .
INORGANIC CHEMISTRY, 2008, 47 (17) :7751-7756
[9]   Guest-dependent high pressure phenomena in a nanoporous metal-organic framework material [J].
Chapman, Karena W. ;
Halder, Gregory J. ;
Chupas, Peter J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (32) :10524-+
[10]   Pressure-Induced Amorphization and Porosity Modification in a Metal-Organic Framework [J].
Chapman, Karena W. ;
Halder, Gregory J. ;
Chupas, Peter J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (48) :17546-17547