Discontinuous finite element methods for the simulation of rotating electrical machines

被引:18
作者
Alotto, P [1 ]
Bertoni, A
Perugia, I
Schötzau, D
机构
[1] Univ Genoa, Dept Elect Engn, Genoa, Italy
[2] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
[3] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
electrical machines; finite element method; simulation;
D O I
10.1108/03321640110383320
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The capability of discontinuous finite element methods of handling non-matching grids is exploited in the simulation of rotating electrical machines. During ti,ne stepping, the relative movement of two meshes, consistent with two different regions of the electrical device (rotor and stator), results in the generation of so-called hanging nones on the slip surface. A. discretisation of the problem in the aii.-gap region between rotor. and stator; which relies entirely on finite element methods, is presented here. A discontinuous Galerkin method is applied in a small region containing the slip surface, and a conforming method is used in the remaining part.
引用
收藏
页码:448 / 462
页数:15
相关论文
共 9 条
[1]  
ALOTTO P, 1998, P 4 INT WORKSH EL MA, P243
[2]  
CASTILLO P, IN PRESS SIAM J NUM
[3]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463
[4]  
COCKBURN B, 1999, LECT NOTES COMPUTATI, V9, P69
[5]   Threedimensional transient BEM-FEM coupled analysis of electrodynamic levitation problems [J].
Kurz, S ;
Fetzer, J ;
Lehner, G .
IEEE TRANSACTIONS ON MAGNETICS, 1996, 32 (03) :1062-1065
[6]  
KURZ S, 1996, P 7 IGTE S NUM FIELD, P492
[7]  
RAPETTI F, 2000, IN PRESS COMPEL
[8]  
Stenberg Rolf, 1998, Computational Mechanics
[9]  
TAUKERMAN IA, 1992, IEEE T MAGN, V28, P1299