A snake toxin inhibitor of inward rectifier potassium channel ROMK1

被引:45
作者
Imredy, JP
Chen, CF
MacKinnon, R
机构
[1] Rockefeller Univ, Howard Hughes Med Inst, New York, NY 10021 USA
[2] Rockefeller Univ, Lab Mol Neurobiol & Biophys, New York, NY 10021 USA
[3] Harvard Univ, Sch Med, Dept Neurobiol, Boston, MA 02115 USA
关键词
D O I
10.1021/bi980929k
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mamba snake dendrotoxins have been used extensively in biochemical and physiological studies of K+ channels of the brain. Their known targets of inhibition have been Limited to the family of voltage-gated K+ channels. We report the isolation of a dendrotoxin inhibitor of ROMK1, a channel belonging to the inward rectifier family of K+ channels. The inhibitory activity, fractionated to purity with FPLC and HPLC, is identical to a previously identified delta-dendrotoxin. To verify that d-dendrotoxin blocks ROMK1 channels, a cDNA encoding the toxin was synthesized and recombinant toxin expressed in Escherichia coli. Electrophysiological recordings reveal that recombinant delta-dendrotoxin has a half-maximal inhibition constant (K-d) of 150 nM when applied to ROMK1 channels expressed in Xenopus laevis oocytes. That the delta-dendrotoxin binding site exists on separate K+ channel classes is shown by its high affinity for two of the voltage-gated family of channels, Kv1.1 (K-d < 0.1 nM) and Kv1.6 (K-d = 23 nM). Single amino acid substitutions in ROMK1 indicate that delta-dendrotoxin binds to the pore region of ROMK1 even though it does not completely block conduction through the pore. These results suggest that dendrotoxins inhibit K+ channels by recognizing the structurally conserved pore region of these channels.
引用
收藏
页码:14867 / 14874
页数:8
相关论文
共 46 条
[1]   The signature sequence of voltage-gated potassium channels projects into the external vestibule [J].
Aiyar, J ;
Rizzi, JP ;
Gutman, GA ;
Chandy, KG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (49) :31013-31016
[2]   K+ CHANNEL SUBTYPES IN RAT-BRAIN - CHARACTERISTIC LOCATIONS REVEALED USING BETA-BUNGAROTOXIN, ALPHA-DENDROTOXINS AND DELTA-DENDROTOXINS [J].
AWAN, KA ;
DOLLY, JO .
NEUROSCIENCE, 1991, 40 (01) :29-39
[3]  
BENISHIN CG, 1988, MOL PHARMACOL, V34, P152
[4]   NUCLEAR-MAGNETIC-RESONANCE SOLUTION STRUCTURE OF DENDROTOXIN-K FROM THE VENOM OF DENDROASPIS-POLYLEPIS-POLYLEPIS [J].
BERNDT, KD ;
GUNTERT, P ;
WUTHRICH, K .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 234 (03) :735-750
[5]   THE INWARD RECTIFIER POTASSIUM CHANNEL FAMILY [J].
DOUPNIK, CA ;
DAVIDSON, N ;
LESTER, HA .
CURRENT OPINION IN NEUROBIOLOGY, 1995, 5 (03) :268-277
[6]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[7]   COMPLETE NUCLEOTIDE-SEQUENCE OF BACTERIOPHAGE-T7 DNA AND THE LOCATIONS OF T7 GENETIC ELEMENTS [J].
DUNN, JJ ;
STUDIER, FW .
JOURNAL OF MOLECULAR BIOLOGY, 1983, 166 (04) :477-535
[8]   THE CHARYBDOTOXIN RECEPTOR OF A SHAKER K+ CHANNEL - PEPTIDE AND CHANNEL RESIDUES MEDIATING MOLECULAR RECOGNITION [J].
GOLDSTEIN, SAN ;
PHEASANT, DJ ;
MILLER, C .
NEURON, 1994, 12 (06) :1377-1388
[9]   Agitoxin footprinting the Shaker potassium channel pore [J].
Gross, A ;
MacKinnon, R .
NEURON, 1996, 16 (02) :399-406
[10]   BLOCKADE BY DENDROTOXIN HOMOLOGS OF VOLTAGE-DEPENDENT K+ CURRENTS IN CULTURED SENSORY NEURONS FROM NEONATAL RATS [J].
HALL, A ;
STOW, J ;
SORENSEN, R ;
DOLLY, JO ;
OWEN, D .
BRITISH JOURNAL OF PHARMACOLOGY, 1994, 113 (03) :959-967