Exact traveling-wave solutions to bidirectional wave equations

被引:53
作者
Chen, M [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
D O I
10.1023/A:1026667903256
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we present several systematic ways to find exact traveling-wave solutions of the systems eta(i) + u(x) + (u eta)(x) + au(xxx) - b eta(xxi) = 0 u(i) + eta(x) + uu(x) + c eta(xxx) - du(xxi) = 0 where a, b, c, and d are real constants. These systems, derived by Bona, Saut and Toland for describing small-amplitude long waves in a water channel, are formally equivalent to the classical Boussinesq system and correct through first order with regard to a small parameter characterizing the typical amplitude-to-depth ratio. Exact solutions for a large class of systems are presented. The existence of the exact traveling-wave solutions is in general extremely helpful in the theoretical and numerical study of the systems.
引用
收藏
页码:1547 / 1567
页数:21
相关论文
共 18 条
[1]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[2]  
BONA J, 1998, PHYSICA D
[3]   MODEL FOR 2-WAY PROPAGATION OF WATER WAVES IN A CHANNEL [J].
BONA, JL ;
SMITH, R .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (JAN) :167-182
[4]  
BONA JL, 1997, BOUSSINESQ EQUATIONS
[5]  
Boussinesq MJ, 1871, C R Math Acad Sci Paris, V72, P755
[6]   AN EXISTENCE THEORY FOR WATER-WAVES AND THE BOUSSINESQ AND KORTEWEG-DEVRIES SCALING LIMITS [J].
CRAIG, W .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1985, 10 (08) :787-1003
[7]   NINTH-ORDER SOLUTION FOR SOLITARY WAVE [J].
FENTON, J .
JOURNAL OF FLUID MECHANICS, 1972, 53 (MAY23) :257-&
[8]   AN EXACT SOLUTION OF THE WAVE-EQUATION UT+UUX-U(5X)=0 [J].
KANO, K ;
NAKAYAMA, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1981, 50 (02) :361-362
[9]   EXISTENCE AND NONEXISTENCE OF SOLITARY WAVE SOLUTIONS TO HIGHER-ORDER MODEL EVOLUTION-EQUATIONS [J].
KICHENASSAMY, S ;
OLVER, PJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (05) :1141-1166
[10]   AN EXACT SOLUTION OF THE CLASSICAL BOUSSINESQ EQUATION [J].
KRISHNAN, EV .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1982, 51 (08) :2391-2392