Genesis of embryonic stem cells

被引:84
作者
Buehr, M [1 ]
Smith, A [1 ]
机构
[1] Univ Edinburgh, Inst Stem Cell Res, Edinburgh EH9 3JQ, Midlothian, Scotland
关键词
pluripotency; self-renewal; diapause; reprogramming; epigenetics; mitogen-activated protein kinase;
D O I
10.1098/rstb.2003.1327
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Embryonic stem (ES) cells are permanent pluripotent stem cell lines established from pre-implantation mouse embryos. There is currently great interest in the potential therapeutic applications of analogous cells derived from human embryos. The isolation of ES cells is commonly presented as a straightforward transfer of cells in the early embryo into culture. In reality, however, continuous expansion of pluripotent cells does not occur in vivo, and in vitro is the exception rather than the norm. Both genetic and epigenetic factors influence the ability to derive ES cells. We have tracked the expression of a key marker and determinant of pluripotency, the transcription factor Oct-4, in primary cultures of mouse epiblasts and used this to assay the effect of experimental manipulations on the maintenance of a pluripotent cell compartment. We find that expression of Oct-4 is often lost prior to overt cytodifferentiation of the epiblast. The rate and extent of Oct-4 extinction varies with genetic background. We report that treatment with the MAP kinase/ERK kinase inhibitor PD98059, which suppresses activation of the mitogen-activated protein kinases Erk1 and Erk2, results in increased persistence of Oct-4-expressing cells. Oct-4 expression is also relatively sustained in cultures of diapause embryos and of isolated inner cell masses. Combination of all three conditions allowed the derivation of germline-competent ES cells from the normally refractory CBA mouse strain. These findings suggest that the genesis of an ES cell is a relatively complex process requiring epigenetic modulation of key gene expression over a brief time-window. Procedures that extend this time-window and/or directly regulate the critical genes should increase the efficiency of ES cell derivation.
引用
收藏
页码:1397 / 1402
页数:6
相关论文
共 30 条
[1]   MODIFYING THE MOUSE - DESIGN AND DESIRE [J].
BRADLEY, A ;
HASTY, P ;
DAVIS, A ;
RAMIREZSOLIS, R .
BIO-TECHNOLOGY, 1992, 10 (05) :534-539
[2]   The origin and efficient derivation of embryonic stem cells in the mouse [J].
Brook, FA ;
Gardner, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (11) :5709-5712
[3]   Rapid loss of Oct-4 and pluripotency in cultured rodent blastocysts and derivative cell lines [J].
Buehr, M ;
Nichols, J ;
Stenhouse, F ;
Mountford, P ;
Greenhalgh, CJ ;
Kantachuvesiri, S ;
Brooker, G ;
Mullins, J ;
Smith, AG .
BIOLOGY OF REPRODUCTION, 2003, 68 (01) :222-229
[4]   Signalling, cell cycle and pluripotency in embryonic stem cells [J].
Burdon, T ;
Smith, A ;
Savatier, P .
TRENDS IN CELL BIOLOGY, 2002, 12 (09) :432-438
[5]   Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells [J].
Burdon, T ;
Stracey, C ;
Chambers, I ;
Nichols, J ;
Smith, A .
DEVELOPMENTAL BIOLOGY, 1999, 210 (01) :30-43
[6]   A SYNTHETIC INHIBITOR OF THE MITOGEN-ACTIVATED PROTEIN-KINASE CASCADE [J].
DUDLEY, DT ;
PANG, L ;
DECKER, SJ ;
BRIDGES, AJ ;
SALTIEL, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (17) :7686-7689
[7]   ESTABLISHMENT IN CULTURE OF PLURIPOTENTIAL CELLS FROM MOUSE EMBRYOS [J].
EVANS, MJ ;
KAUFMAN, MH .
NATURE, 1981, 292 (5819) :154-156
[8]  
Gardner RL, 1997, INT J DEV BIOL, V41, P235
[9]  
Hunter SM, 1999, MOL REPROD DEV, V52, P29, DOI 10.1002/(SICI)1098-2795(199901)52:1&lt
[10]  
29::AID-MRD4&gt