Sparse variable principal component analysis with application to fMRI

被引:13
作者
Ulfarsson, Magnus O. [1 ]
Solo, Victor [2 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Univ New S Wales, Sch Elect Engn, Sydney, NSW, Australia
来源
2007 4TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING : MACRO TO NANO, VOLS 1-3 | 2007年
关键词
biomedical image processing; Functional Magnetic Resonance Imaging; statistics;
D O I
10.1109/ISBI.2007.356888
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multivoxel methods such as Principal Component analysis (PCA) and Independent component analysis (ICA) have been found to be useful in fMRI data analysis. They can extract biologically interpretable components without any knowledge of the experimental settings. Interesting brain networks such as the motor or the visual cortex typically have sparse spatial structure that PCA or ICA do not make use of. Sparse PCA is a new class of methods that is able to null out voxels containing only noise therefore getting more accurate results. In this paper we apply our own previously introduced sparse PCA method for the first time on real fMRI data. Additionally, we use different estimation method, which is much faster than the one previously introduced, therefore making the method more attractive for large fMRI data sets.
引用
收藏
页码:460 / +
页数:2
相关论文
共 23 条
[1]  
Bertsekas D., 1999, NONLINEAR PROGRAMMIN
[2]   Linear systems analysis of functional magnetic resonance imaging in human V1 [J].
Boynton, GM ;
Engel, SA ;
Glover, GH ;
Heeger, DJ .
JOURNAL OF NEUROSCIENCE, 1996, 16 (13) :4207-4221
[3]   Statistical methods of estimation and inference for functional MR image analysis [J].
Bullmore, E ;
Brammer, M ;
Williams, SCR ;
Rabehesketh, S ;
Janot, N ;
David, A ;
Mellers, J ;
Howard, R ;
Sham, P .
MAGNETIC RESONANCE IN MEDICINE, 1996, 35 (02) :261-277
[4]  
Buxton R.B., 2002, Introduction to functional magnetic resonance imaging: principles and techniques, DOI DOI 10.1117/1.JBO.21.3.036008
[5]   Parametric analysis of fMRI data using linear systems methods [J].
Cohen, MS .
NEUROIMAGE, 1997, 6 (02) :93-103
[6]   The geometry of algorithms with orthogonality constraints [J].
Edelman, A ;
Arias, TA ;
Smith, ST .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 20 (02) :303-353
[7]  
Friman O, 2001, MAGNET RESON MED, V45, P323, DOI 10.1002/1522-2594(200102)45:2<323::AID-MRM1041>3.0.CO
[8]  
2-#
[9]  
Friston K., 1994, HUM BRAIN MAPP, V1, P153, DOI [10.1002/hbm.460010207, DOI 10.1002/HBM.460010207]
[10]   FUNCTIONAL CONNECTIVITY - THE PRINCIPAL-COMPONENT ANALYSIS OF LARGE (PET) DATA SETS [J].
FRISTON, KJ ;
FRITH, CD ;
LIDDLE, PF ;
FRACKOWIAK, RSJ .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1993, 13 (01) :5-14